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ABSTRACT  

Many modern systems are so large that no one truly understands how they work.  It is well known in the 
engineering community that architectural patterns (including hierarchies, modules, and abstraction layers) 
should be used in design because they play an important role in controlling complexity.  These patterns make 
a system easier to evolve and keep its separate portions within the bounds of human understanding so that 
distributed teams can operate independently while jointly fashioning a coherent whole. 

This study set out to measure the link between architectural complexity (the complexity that arises within a 
system due to a lack or breakdown of hierarchy or modularity) and a variety of costs incurred by a 
development organization.  A study was conducted within a successful software firm.  Measures of 
architectural complexity were taken from eight versions of their product using techniques recently developed 
by MacCormack, Baldwin, and Rusnak.  Significant cost drivers including defect density, developer 
productivity, and staff turnover were measured as well.  The link between cost and complexity was explored 
using a variety of statistical techniques. 

Within this research setting, we found that differences in architectural complexity could account for 50% 
drops in productivity, three-fold increases in defect density, and order-of-magnitude increases in staff 
turnover.  Using the techniques developed in this thesis, it should be possible for firms to estimate the 
financial cost of their complexity by assigning a monetary value to the decreased productivity, increased 
defect density, and increased turnover it causes.  As a result, it should be possible for firms to more accurately 
estimate the potential dollar-value of refactoring efforts aimed at improving architecture. 
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2 Motivation 

Designers of today‘s large systems struggle with the fact that those systems are both complicated and complex.  

Modern systems are complicated in the sense that they have far exceeded the bounds of human understanding. 

[1-3] The collective knowledge required to complete a design is much broader than could be internalized by a 

single person over the course of a lifetime.  Hundreds or thousands of engineers now make intellectual 

contributions to the design of single artifacts.  Secondly, modern systems are complex.  One of the defining 

features of complex systems is that they are often interconnected in ways that enable unanticipated behavior 

to emerge as a result of unexpected interactions between system components.  Because of this emergent 

behavior, the whole often does not behave in a manner that logically follows from the independent functioning 

of its parts.   

System architects often take great pains to keep complexity under control because overly complex systems 

carry a variety of costs and risks.  They are more expensive to design, harder to maintain, and can be more 

prone to failure.  System complexity clearly adds value as well, however.  Over the last century, increasingly 

complex machines, services, processes, and infrastructures have done old jobs better and provided new 

capabilities that were previously unimaginable.  While complexity can be costly, a higher-complexity system 

may very well be worth the price. [4] A natural tradeoff therefore exists between enabling valuable 

functionality or performance characteristics and keeping complexity under control.   

Complexity across systems, and the complexity of different regions within the same system, can vary widely.  

In the battle to constrain and channel the behavior of a large system so that complexity is appropriately 

managed, a principal weapon in the designer‘s arsenal is the architectural pattern.  Architects striving to make 

large systems tractable make them hierarchical, compose them of independent modules, separate them into 

conceptual layers, and reuse parts.  These types of architectural patterns endow systems with inherently 

beneficial properties [5], and also ―addres[s] basic human limitations in dealing with complexity.‖ [6] Design is 

not easy or straightforward, however.  Weighing the costs and benefits of alternative architectural choices is 

difficult.  Designers must choose between multiple competing ways to decompose a system into hierarchical 
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structures and competing criteria for determining which functionality should be clustered in each module. [7] 

They must determine how big each module should be and how interfaces between them should be structured.  

In addition, hierarchy and modularity are not free – they impose their own costs, may impact performance, 

and can limit the scope of future decision-making. A designer must trade performance requirements against 

complexity controlling features across the system being designed.  These choices will have a profound impact 

on how complicated and complex different portions of a system will be.  As a result, a system may have 

regions bearing widely varying costs and risks. 

Unfortunately, there has been is little quantitative work to help managers and designers understand the cost 

of complexity in an architecture.  Because of this, it is hard for them to place a value on hierarchy and 

modularity in a system design.  It is hard for them to understand the burden that a company is forced to 

shoulder when architectural patterns degrade over the life of a long-lived system.  Finally, it is hard for them 

to objectively weigh the value of refactoring efforts aimed at asserting (or reasserting) various principles of 

large-scale system design. 

The purpose of the study described in this thesis is to begin to fill this gap. In this report, we describe 

research that was done to measure costs incurred by a successful commercial software development firm 

during the ongoing development of a mature software product. Tens of thousands of individual software 

source-code files were assigned complexity scores related to their network positions within the software‘s 

architecture.  A variety of costs were measured over eight back-to-back development windows. These 

included the number of defects fixed in complex files, differences in the productivity of engineers working 

with complex files, and differences in staff turnover among engineers working in complex files.  By 

presenting a well-rounded consideration of the costs of complexity in different regions of a mature technical 

architecture, we hope to provide insights that might allow development organizations to weigh important 

tradeoffs in a structured manner.  Complexity is neither good nor bad.  It provides value, but is also costly.  

An ability to measure the multidimensional costs of complexity could help to inform important decisions 

made during the design and maintenance of today‘s large software systems. 
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Over the course of this discussion, we will focus on a specific type of complexity: architectural complexity. 

Regions within a system that are more architecturally complex have fewer hierarchical and modular structures 

governing the relationships between system elements.  Hierarchy and modularity are well known patterns 

employed by man and nature to keep complexity under control even as systems grow. Technical architectures 

in which these patterns are judiciously applied often have a variety of evolutionary advantages.  They tend to 

be more stable, of higher quality, safer, and benefit from other ―ilities‖ over the course of their lifecycles.  

During this research, we operationalize the concept of architectural complexity by using network algorithms 

and metrics devised by MacCormack, Baldwin, and Rusnak [8, 9] that classify system elements based on their 

level of coupling (both direct and indirect) with the rest of the system.  Because these procedures are designed 

to identify regions of an architecture containing large system spanning cycles of dependencies, they can 

identify regions in which hierarchical structure and modular isolation are relatively absent.  These high-

complexity regions may exist because they were originally designed to be high coupled, or because of a 

subsequent degradation of complexity controlling patterns. 

A software system was chosen for analysis because software has several unique properties that enable this 

study.  First, software is an artifact that embodies pure function unencumbered by the burden of physical 

form.  Software development firms engage in design but have no need for manufacturing or assembly.  By 

observing a large software firm, we are measuring a design process unencumbered by many economic 

constraints, such as the large fixed costs found in an aerospace plant, and with few serious constraints 

imposed by physics.  By looking at a software firm, we are in some senses isolating the impact of complexity 

on the cost of maintaining a design.  Secondly, software is grown, evolved, and reconfigured more rapidly 

than other systems precisely because of this relative dearth of economic and physical constraints.  Empirical 

observations of the same phenomena can be made over shorter time-scales.  Thirdly, successful software 

systems have the property that they are extremely long-lived.  MacCormack tells us ―mature products often 

contain significant amounts of code from their earliest versions, even if major evolutions in design have since 

been made.‖  He tells us that as they grow and take on new functionality they ―bare the consequences of 

decisions made long ago.‖ [9] This continuity between successive versions supports longitudinal analysis.  
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Finally, the architecture of a software system can be automatically extracted from its source code, and 

important cost-related information can be assembled from version control systems, bug-tracking systems, and 

other databases commonly used in software development, thus making it feasible to explore the cost of 

complexity in very large systems. 

In this study, we found that differences in architectural complexity accounted for differences in developer 

productivity of 50%, three-fold differences in defect density, and order-of-magnitude differences in staff 

turnover.  Costs of this magnitude make a strong case for the benefits of design patterns that manage 

complexity and the value of system redesign efforts aimed at imposing (or re-imposing) those patterns. 
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2.1 Research Questions 

This study aims to address one overarching question:  

 What costs does architectural complexity within a software system impose on the design 

organization that develops and maintains it? 

There are several costs that architectural complexity within a design might impose on the development 

organization.  We choose to focus on a subset with a direct and measurable impact on payroll – the principal 

expenditure within many software and engineering design firms: 

 Quality: Do software components in more architecturally complex regions of a codebase 

experience more defects?  Every hour that an engineer spends correcting a defect is pure waste.  It 

is an activity that the organization must perform, but derives no value from.  Quality also impacts 

customers, and therefore impacts firm reputation, adoption, and market-share. 

 Productivity: Are engineers who work in software components with higher levels of 

architectural complexity less productive?  System components that are harder to work with waste 

designers‘ time.  If designers are twice as productive working in components where architectural 

complexity is low, we can say that high complexity consumes half of that individual‘s effort.   

 Human Capital: Is there a higher rate of staff turnover among engineers working in software 

components with higher levels of architectural complexity?  If complexity is related to higher 

turnover, we can say that the cost of that complexity is the cost of recruiting and training 

replacements.  Furthermore, if complexity is an influential factor in staff turnover, then it clearly 

must play some role in harming morale as well. 
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3  Literature Review 

An interesting and diverse body of work has looked at many of the issues around the relationship between 

complexity, architecture and costs.  In this section, we review pertinent literature on complexity in systems, 

and more specifically on software complexity.  We explore the dangers that complexity in a technical system 

can pose.  We then turn to the role of system architecture and the means by which common architectural 

patterns (such as hierarchy, modularity, and abstraction layering) in a design keep complexity under control.  

We look at how these canonical patterns can be measured and reasoned about by exploring high-level 

network representations of real systems.  We then look at past work that has explored software designs using 

network-analysis and review the history of complexity measurement in software.  We conclude by looking at 

the problems an organization faces when trying to decide whether (or how) to reduce complexity within an 

existing system‘s architecture. 

3.1 Complexity in Systems 

Two things that make today‘s systems hard to design and maintain are that they are complicated and they are 

complex.  By complicated, we mean that they are so large or detailed that no single individual can understand how 

they work.  By complex, we often mean that interactions between parts can result in strange behavior that is 

hard to anticipate and which can threaten safe and reliable operation.1  This was not always the case.  During 

the time period since the beginning of the Industrial Revolution until the advent of complex systems in the 

early twentieth century, those individuals running design and manufacturing organizations were capable of 

understanding their processes and products.  During this ―epoch of great inventions and artifacts‖ [10] large 

hierarchically structured organizations grew by taking advantage of differentiated labor  and interchangeable 

parts. [11-13] The design process, however, remained in the hands of small groups of people.  Once a 

                                                      

1 This distinction between complexity and complicatedness is used by Crawley [1], while many others use the 
word complexity to denote both meanings.  In this report, we will sometimes distinguish between the two 
where the distinction is appropriate, but will also use the term complexity to refer to both psychological 
aspects and properties inherent to a system elsewhere. 
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problem was understood, managers coped with the demands of accomplishing a large task by dividing it until 

each sub-task was small enough for a person or team to handle.  Hierarchical control, division of task, and 

assembly of standard parts led from Adam Smith [13] to Taylor‘s system of Scientific Management [14], 

Ford‘s assembly line, and Edison‘s electrification at the turn of the twentieth century.  Then something began 

to change.  Systems such as the telephone network [15] and automated gunfire control systems [16] seemed 

to increasingly resist reductionist approaches.  The process of designing and operating modern machines 

began to change in fundamental ways. [10] 

The technical knowledge required to complete a modern system‘s design is much more than could be learned 

by a single person over the course of a lifetime.  These systems have far exceeded the bounds of human 

understanding. [1-3] Complicated systems sometimes consist of billions of parts connected in countless ways.  

Hundreds or thousands of engineers make intellectual contributions to the design of these artifacts. As a 

result, it is no longer only the organization, the product, and the production process that must be 

decomposed.  The design process itself must be subdivided and allocated to large groups of people with 

different skills.  Those charged with designing and evolving a complicated system must grope for means of 

managing the structure of the design process (the layout of teams and the communication channels between them) 

even though everyone involved is at least partially blind.  A recent British Royal Academy of Engineering 

report says that ―[o]n a large software project one is lucky if one person in 50 has anything resembling an 

overall understanding of the conceptual structure of the project, and divinely blessed if that person has the 

ability to explain it in lay terms.‖ [17] It is often now impossible for a group of engineers to really know if a 

flaw in the decomposition of the design organization will lead them to miss opportunities to create a good 

technical structure, or if the collective ―unknown-unknowns‖ will wreak havoc on the end result. [5] Further 

compounding this issue is the fact that today‘s large system designs are often created by teams that span 

firms, institutions, and continents.  Somehow, mysteriously, many of our complex systems work even though 

no one can truly claim to know how or why. 
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In the past hundred years our systems also became complex.  One of the defining features of complex systems 

is that of emergent behavior – the idea that the whole often does not behave in a manner that logically follows 

from the independent functioning of its parts.  The need to avoid emergent behavior (to prevent defects or 

disaster) or the desire to find and exploit it requires modern organizations to employ strategies, processes, and 

structures beyond hierarchical reductionism.  Some properties that we require in our complex systems – such 

as safety – cannot be obtained by assigning responsibility to a single group because they are systemic in 

nature.  Accidents often result from unanticipated interactions between parts, not from problems identifiable 

within individual components.  [18, 19] 

3.2 Complexity in Software 

The invention of software adds a new twist because it is function unencumbered by the burden of form.  

During the industrial revolution, production was distributed but design was not.  In complex electro-mechanical 

systems, both design and production were separate things to be decomposed.  Now, with the advent of large 

software products, design is distributed but the notion of a production process entirely eliminated.  There are no 

large fixed costs and no serious physical constraints.  By examining software evolution and development 

activity in a large software firm, we are observing complex design evolution in a strikingly pure form.2  The 

evolutionary forces guiding the development of programming languages and methodologies since the 1970s 

have often favored those technologies that allow humans to better manage complexity.  Fred Brooks 

forcefully makes this point:  

                                                      

2 There is sometimes debate as to whether software creation could be partitioned into separate design 
processes and production processes more akin to manufacturing.  We argue that programming is – and 
always will be – design.  Software developers continuously encounter semi-routine tasks. They write programs 
to automate them as part of their normal workflow.  As these programs become more general, they are often 
shared.  The software industry as a whole responds in a similar manner as it evolves.  Whenever a concept 
becomes sufficiently well understood that it can be turned into a repeatable process and routinized, a program 
is written to perform the task.  If a concept is sufficiently abstract, it will become a design pattern used in 
existing languages, and might later become a syntactical construct embedded in new languages.  There is no 
room in software for non-design professionals because non-creative tasks are mechanized as a matter of 
course. 
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Software entities are more complex for their size than perhaps any other human construct 

because no two parts are alike… In this respect, software systems differ profoundly from 

computers, buildings, or automobiles, where repeated elements abound… Likewise, a 

scaling-up of a software entity is necessarily an increase in the number of different elements. 

In most cases, the elements interact with each other in some nonlinear fashion, and the 

complexity of the whole increases much more than linearly…  Many of the classic problems 

of developing software products derive from this essential complexity and its nonlinear 

increases with size. From the complexity comes the difficulty of communication among 

team members, which leads to product flaws, cost overruns, schedule delays. From the 

complexity comes the difficulty of enumerating, much less understanding, all the possible 

states of the program, and from that comes the unreliability. From complexity of function 

comes the difficulty of invoking function, which makes programs hard to use. From 

complexity of structure comes the difficulty of extending programs to new functions without 

creating side effects. From complexity of structure come the unvisualized states that 

constitute security trapdoors. [20] 

Brooks is not alone in his belief in the essential complexity of software.  In a paper reviewing the evolution of 

the field from its inception until 1997, Shapiro concluded ―[f]rom the 1960s onward, many of the ailments 

plaguing software could be traced to one principal cause - complexity.‖   Shapiro begins his paper with the 

assertion that the ―fundamental nature of software—involv[es] basic and poorly understood problem-solving 

processes combined with unprecedented and multifaceted complexity‖, and then proceeds to employ the 

word 107 more times. [6] In his review paper, complexity fell into two general categories: ―program 

complexity‖ [21] related to of control, size, modularity, information content, and data structures and 

―psychological complexity,‖ [22] related to ―problem comprehension, translation, and system design.‖ Basili 

refined this notion of psychological complexity by saying that complexity is ―a measure of the resources 

expended by another system while interacting with a piece of software. If the interacting system is people, the 

measures are concerned with human efforts to comprehend, to maintain, to change, to test, etc., that 
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software." [23]  

Shapiro said that as hardware became more capable during the 1970‘s, program efficiency took a backseat to 

complexity management and human understandability as the primary evolutionary force within the field. [6] 

Since that time, advocates for many successful software engineering innovations such as stepwise refinement, 

information hiding, top-down design, structured design, and object-orientation each put their newly-preferred 

method forward as a better means of coping with complexity, complicatedness, or both.   

3.3 The Importance of Controlling Complexity 

System designers must place great importance on controlling complexity during the design process and in 

systems once they are operational.  When complexity in a design is well managed it makes the design process 

proceed more smoothly and makes the resulting system more reliable.  Unfortunately, ―Complexity in large 

scale IT systems remains an area which is insufficiently well understood. The degree of complexity entailed in 

achieving a particular objective can be very difficult to estimate at the project outset.‖ [17] Complexity in a 

design always has the potential to be problematic.  Even when it remains manageable, it causes project delays, 

defects and other forms of waste.  When we lose control of complexity, project failures can sink firms and 

accidents can cause property destruction and loss of life.   

3.3.1 Uncontrolled Complexity in Design Projects 

Complexity in the design process has led to many of high-profile cost overruns, project failures and 

bankruptcies.  Lyneis says that ―a major reason for continued schedule and budget performance problems is 

that while projects are fundamentally complex dynamic systems, most project management concepts and 

tools either (1) view a project statically or (2) take a partial, narrow view in order to allow managers to cope 

mentally with the complexity.  Traditional tools and mental models are inadequate for dealing with the 

dynamic complexity of projects.‖ [24] A few notable examples of failed software projects include a multi-

billion dollar attempt to create an FAA air-control system [25] and an automated baggage handling system in 

the Denver airport that ―mutilated and lost bags.‖ [26] 
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Coupled interactions and feedback between quality, productivity, rework, and turnover are often responsible 

for success or failure on large projects.  A family of empirically validated differential-equation-based project 

management models has been created to link and explore these causal influences. [24] Many of these 

feedback models have also been designed and calibrated specifically for the purpose of understanding project 

and organizational dynamics in software. [27-29] These system dynamics models simulate a variety of 

interrelated pathologies that can sink large projects.  Quality problems can lead to low productivity because 

designers must create workarounds and sometimes build on top of functionality that is eventually reworked 

or scrapped.  Low productivity leads to project delays, time pressure, and further quality problems.  Delays 

lead to overtime and overwork, leading to fatigue, mistakes, burnout and turnover.  Turnover leads to the 

hiring of rookies, whom are both more likely to introduce defects, and less productive than veterans.  In 

addition, rookies require mentorship, which takes time away from the veterans who would otherwise be 

working in the system.  Overworked mentors might spend less time helping new employees mature.  Project 

dynamics models tell us that some projects operate within acceptable thresholds allowing them to complete in 

a reasonable manner, while others succumb to these interrelated pathologies.  The causal relationships 

influencing the evolution of a large program combine to form a system that is highly non-linear and can be 

unstable.  Seemingly minor policy choices can be the only thing separating a smoothly running project from a 

―death march.‖ 

Another body of work – built around task structure matrices - explored the strong link between unanticipated 

rework and coupling in technical designs. Because the link between task dependencies in a development 

project and coupling in a design is very strong, rework on a design project is highly related to complexity in a 

product‘s architecture.  This body of work tells us that dependencies that are unmanaged, unanticipated, 

cyclical, or architecture spanning can result in project overruns, organizational dysfunction, and failure to 

converge on a workable design.  [5, 30-36] 
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3.3.2 Uncontrolled Complexity in Operational Systems 

Complexity has been responsible for a variety of high-profile system failures and accidents that have lead to 

loss of life. [18, 37] Since the advent of complicated systems, we have been forced make ourselves content 

with the fact that design processes must sometimes be distributed and self-organizing [38-41].  Complexity-

based methods are used in system analysis. [42-49] Successful designs must also be structured in such a way 

that they can evolve over time in response to learning, new requirements, and new opportunities. [48, 50, 51] 

Designers still have little desire to be surprised by the behavior of large systems that are in operation - when 

this happens, the results are generally undesirable. 

A major goal of a designer is to manage structural complexity in a design so as to keep the dynamic and emergent 

complexity of a system in operation well understood and controlled.3  This is because accidents are often 

caused by unanticipated interactions between parts.  [18, 19]  For example, the Tacoma Narrows bridge 

collapse in 1940 was caused by harmonic properties of the bridge as a whole.  This scenario was hardly 

considered by its designers.  More recently, a cascading power failure in India affected over a half billion 

people in July of 2012 [54].  While the exact cause is presently unclear, what is evident is that the power 

distribution network was structured in such a way that a positive feedback loop could amplify a local problem 

and cripple an entire country.  These types of failures are pernicious because they result when the structure of 

the whole system exhibits insufficiently constrained behavior.  When emergent properties of the system as a 

whole are unanticipated, they often cause emergencies.  

 

                                                      

3 While the system architecture community focuses more on structural complexity, and the system dynamics 
community [37, 52, 53] focuses more on behavioral complexity (or dynamic complexity), both communities 
agree that the structure of a system is a key driver of its long term behavior and dynamic characteristics.  Both 
communities view structures and the resulting dynamic interactions as directly responsible for how a system 
performs during periods of stability and how likely various catastrophic events might be. 
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3.4 Architecture Controls Complexity 

The fact that modern system are so complicated that the design itself must be decomposed and distributed, 

and the fact that modern systems are so complex that unexpected behaviors can emerge (often due to 

interactions between separately designed components) lead to a new role for a design professional known as a 

system architect.  The role of this person is to analyze stakeholders, study their needs, and serve as their 

representative throughout the design process.  The architect must devise a concept for a complex system and 

ensure that when built, it functions appropriately.  In 2004, the Massachusetts Institute of Technology ‗ESD 

Architecture Committee‘ [55] said that ―[m]an-made… systems are intended to have certain primary 

functions, plus other properties that we call ―ilities:‖ durability, maintainability, flexibility, and so on… The 

primary functions have immediate value while the ilities tend to have life-cycle value…. Complex systems 

have behaviors and properties that no subset of their elements have… Some of these are deliberately sought 

as the product of methodical design activity… While achieving these behaviors, the designers often accept 

certain undesirable … side effects…  In addition, systems have unanticipated behaviors commonly called 

emergent. Emergent behaviors may turn out to be desirable in retrospect, or they may be undesirable.‖  The 

architect must design a system that can function properly, appropriately control and channel its complexity, 

and make hard tradeoffs.  The architect must identify important system-level properties that must be 

managed centrally, decompose the design into manageable chunks, create design rules [5] and promote design 

patterns [56] which allow engineers to manage complexity within and between their subsystem boundaries.  

Up-front choices that an architect makes constrain the design space, but also reduce ambiguity and reduce the 

time that will be required to converge to a workable system if done properly.  The role of the architect is to 

identify inherent tensions in the space of possible designs that will lead to chaos if left unmanaged, manage 

those choices centrally, and leave teams free to innovate independently within the necessary constraints.  

Important design rules may seem sub-optimal at the local level.  In such cases, the role of the architect is to 

represent the global perspective.   The architect must also represent the long-term perspective by carefully 

considering total lifecycle costs because maintenance costs sometimes exceed the cost of development by a 
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ratio of ten to one. [57] Pimmler and Eppinger say ―[t]he choice of product architecture has broad 

implications for product performance, product change, product variety, and manufacturability.‖ [58] Brooks 

says that establishing a common vision around a system plan with ―conceptual integrity‖ is of utmost 

importance. [59, 60] Crawley says that of all activities that go on during the creation of a system, architecture 

―has some of the greatest impact on eventual success.‖ [1]  

The architect must ―design the design.‖ [59, 60] Architects decompose a design by allocating similar 

functionality to modules with high cohesion, creating controlled interfaces isolating a module‘s internals from 

its external environment, devising shared utilities for common use, making communication protocols clear, 

and arranging modules into a hierarchies and layers.  The system must be structured in such a way that design 

teams can operate independently much of the time, know when coordination is required, and be able to 

coordinate effectively when necessary.  The overall structure should be set up in such a way that individual 

teams evolving separate chunks rarely cause unwanted side-effects elsewhere, designers can recognize threats 

when they do occur, and the overall conceptual integrity of the system is maintained. All of this involves a 

number of hard choices.  The architect must contend with multiple competing ways of decomposing a system 

into hierarchical structures [7] and competing criteria for determining which functionality should be clustered 

in each module. [58] The architect must also determine how big each module should be and how interfaces 

between them should be designed. These choices will have a profound impact on how complex different 

portions of a system will be. 

A successful architecture process will yield an abstract description of a large system that, if designed and built, 

would function appropriately, control complexity, and have the ability to scale and evolve over time.  Ulrich 

and Eppinger define this as ―the scheme by which … decomposed elements are arranged in chunks.‖ [61] 

Ulrich chooses to ―define product architecture more precisely as: (1) the arrangement of functional elements; (2) 

the mapping from functional elements to physical components; (3) the specification of the interfaces among interacting 

physical components.‖ [62] Crawley defines architecture as the ―The embodiment of concept, and the 

allocation of physical/informational function to elements of form, and definition of interfaces among the 
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elements and with the surrounding context.‖  [1] Moses says that the architecture of a system ―is a skeleton 

that connects the components of the system. A skeleton does not fully describe the human body or an 

engineering system, but it is a necessary and crucial part of the system‘s description.‖ [63] When analyzing 

systems, Moses sees value in creating architectural descriptions emphasizing structural complexity (a description 

of parts and their connections).  He finds it useful ―to study the relationships between certain generic 

architectures (e.g., tree structures, layered structures, networks), their structural complexity and the non-

traditional properties of systems, such as flexibility.‖ [63] Ultimately, the high level structural patterns that are 

built into a design from its inception will have a profound effect on the evolutionary trajectory and lifetime 

cost of a complex system. 

3.5 Important Architectural Patterns 

Certain well-known patterns are employed by man and nature to keep complexity under control even as 

systems grow.  These patterns include hierarchy, modularity, and abstraction layering.  Technical architectures 

in which these patterns are judiciously applied tend to be of higher quality, safer, and benefit from other 

―ilities‖ over the course of their life cycles.    

3.5.1 The Benefits of Hierarchy 

Formally, the term hierarchy denotes any directed acyclic graph (DAG).  While, it may not contain cycles, it 

can contain multiple source and sync nodes, and can both diverge and converge.  A tree is a very common 

type of hierarchy that fans out from a single root (or controller node) and never converges.  A layered system 

is a different kind of hierarchy.  Hierarchies are pervasive organizing patterns in many large real-world 

systems because they endow systems with a variety of useful properties.  Herbert Simon tells us that 

―[h]ierarchy … is one of the central structural schemes that the architect of complexity uses.‖ [51] In The 

Sciences of the Artificial, he says ―complex systems might be expected to be constructed in a hierarchy of 

levels, or in a boxes-within-boxes form.  The basic ideas it that several components in any complex system 

will perform particular sub-functions that contribute to the over-all function… To design such a complex 
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structure, one powerful technique is to discover viable ways of decomposing it to semi-independent 

components corresponding to its many functional parts.  The design of each component can then be carried 

out with some degree of independence of the design of others, since each will affect the others largely 

through its function and independently of the detail of the mechanisms that accomplish the function.‖ [48, 

51] Leveson says ―a general model of complex systems can be expressed in terms of a hierarchy of levels of 

organization, each more complex than the one below, where a level is characterized by having emergent 

properties. Emergent properties do not exist at lower levels; they are meaningless in the language appropriate 

to those levels…  Thus, the operation of the processes at the lower levels of the hierarchy result in a higher 

level of complexity… [A]t a given level of complexity, some properties characteristic of that level (emergent 

at that level) are irreducible.‖ [19] Simon says that hierarchical systems are commonly found in the natural 

world because nearly decomposable hierarchies with stable subsystems (or intermediate forms) enable 

evolutionary processes, allowing highly ordered systems to grow, acquire new capabilities, and adapt.  Simon 

notes that hierarchical patterns in systems manage complexity because they ―have a high degree of 

redundancy, hence can often be described in economical terms.‖ Hierarchical organization assists designers 

by reducing the cognitive burden placed on the human mind when examining a system from any one vantage 

point. Hierarchies also facilitate top-down control and the imposition of safety constraints [19, 64].  They are 

useful structures for classifying, storing, and searching for information. [65] Finally, the requirement that a 

hierarchy contains no cyclic connections reduces the possibility that feedback loops will be formed between 

widely separated components.  These feedback loops, or cycles, can hindering change [31] or lead to 

unintended  non-linear dynamic behavior. [53] 

3.5.2 The Benefits of Modularity 

Modular is a term used to describe architectures composed of distinct modules – semi-autonomous structures 

with formal boundaries that separate their internal environment from the outside world.  Robust modules 

have the property of ―homeostasis‖ – their internal functioning is not easily disrupted by fluctuations in the 

external environment. [49] Modular systems contain many independent components, each of which can 
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change or evolve separately with minimal impact on each other or on the system as a whole.  [66] Modules 

hide information in the sense that the use of one only requires a client to understand its interface, not its 

complex internals. Modularity was recognized as a critical means of controlling software complexity as early 

as the 1960s. [67] In the early 1970s, Wirth proposed a process of ―stepwise refinement‖ for designing 

software in a manner that would result in modularized code. [68] Parnas, whose work anticipated object-

orientation, followed up by contributing reasonable advice on what criterion should be used when 

decomposing a software design into modules. [69, 70] As computer science developed, increasingly 

sophisticated types of modules were invented including an extreme form, known as object-orientation, which 

combined data-type abstraction and access control. [6, 71, 72] Modularity is similarly important in physical 

product design.  Ulrich‘s classic paper contrasted modularity with integrality and discussed multiple types of 

modularity including slot modularity, bus modularity, and sectional modularity.  He described the relative 

advantages of each type and illustrated his case by showing alternative design concepts for a trailer, a personal 

computer, and an office desk. [62] Ulrich defined a perfectly modular product as one in which every internal 

function is performed by a distinct part. He said ―[a]t one extreme, modular products allow each functional 

element of the product to be changed independently by changing only the corresponding component. At the 

other extreme fully integral products require changes to every component to effect change in any single 

functional element. The architecture of a product is therefore closely linked to the ease with which change to 

a product can be implemented.‖ Ulrich noted that modular product architectures are more flexible, adaptable, 

and manufacturable.  Baldwin and Clark tell us why modularity is important in economic terms.  They say 

―modularity in design - an observable property of design and design processes – dramatically alters the 

mechanism by which designs can be changed.  A modular design in effect creates a new set of modular 

operators, which open up new pathways of development for the design as a whole.‖ [5] When designers are 

working inside a modular technical design, they can independently transform modules in six important ways.  

Modules in a system can be split, substituted, augmented, excluded, inverted, and ported.  Baldwin and Clark 

demonstrate through computer simulation how the option to independently modify subcomponents within a 

modular system accelerates innovation by creating ―real options‖ in the system‘s design that behave similarly 
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to options in the world of finance.  Essentially, driving modularity into an integral architecture can transform a 

single large investment into a much more valuable basket of small investments. Baldwin and Clark tell us that 

modular designs can ―evolve via a decentralized search by many designers for valuable options,‖ each 

experiment conducted independently within a bounded span of responsibility and control.  In general, 

modularity is a useful attribute, but not all systems can be modular.  Whitney points out that many systems 

cannot achieve the level of modularity often achievable in software and digital systems due to fundamental 

power constraints or because multiple types of system-spanning relationships (power, informational, 

electrical, physical, force translation, etc.) each suggest alternative modularizations, none of which are fully 

satisfactory. [7] Whitney also makes note of the current movement towards integrality in computer design 

brought on by the need to dissipate heat in laptops.  Furthermore, modularity is not free.  Modular designs 

contain overhead in the form of ―design rules‖ that add cost to the front-end of a design process and 

potential recurring costs in the form of ongoing performance limitations. [5] This may be a worthwhile 

investment in software systems with volatile codebases or complicated problem domains.  In systems that are 

less volatile or complicated, the investment in modularity may not pay off. [73] 

3.5.3 The Benefits of Abstraction Layers and Platforms 

Layers combine the notion of hierarchy and modularity in a manner that serves to contain complexity and 

endow a system with a variety of beneficial properties.  Layers in systems provide services to components 

above them while relying on services provided by those below. They combine the notion of directionality 

found in hierarchies with the notion of information hiding found in modules.  Conceptual layers in a design 

are sometimes called abstractions.  In other contexts, technology layers are called platforms.  Although layers are 

themselves inflexible, Moses says that layered structures can make an overall system more flexible.  [74] 

Baldwin and Woodward tell us that platforms form rigid structures in an architecture that create stable 

interfaces upon which modules can rapidly evolve.  [75] Moses says, ―Layered systems are common in large 

scale hardware/software systems. For example, a personal computer will have a layer for the microprocessor, 

several layers for the operating system including a user interface layer, possible layers for a database system, 
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and additional layers for application software.‖ [74] Layering hides information in a stronger manner than 

modularity does because it partitions a complex network of components into two distinct regions that may be 

considered independently.  In addition to hiding details, abstraction layers may embody new higher-level 

concepts by aggregating diverse facilities into a useful coherent whole.4  Abstraction layers can also partition 

systems by engineering discipline or be responsible for defining the boundaries between disciplines.  The 

transistor, for instance, creates a useful barrier that allows electrical engineers to study quantum mechanics 

while computer engineers can study Boolean logic. Krueger says that the creation of new abstraction layers is 

the primary means by which large-scale reuse is achieved in software.  [76] Functionality that is repeatedly 

found to be useful ends up buried beneath layers of abstract symbols in subsequent generations.  Daniel 

Jackson says that the creation of conceptual abstractions is central to the design of software:  

―Software is built on abstractions.  Pick the right ones, and programming will flow naturally 

from design; modules will have small and simple interfaces; and new functionality will more 

likely fit in without extensive reorganization.  Pick the wrong ones, and programming will be 

a series of nasty surprises:  interfaces will become baroque and clumsy as they are forced to 

accommodate unanticipated interactions, and even the simplest of changes will be hard to 

make.  No amount of refactoring, bar starting again from scratch, can rescue a system built 

on flawed concepts.  Abstractions matter to users too.  Novice users want programs whose 

abstractions are simple and easy to understand; experts want abstractions that are robust and 

general enough to be combined in new says.  When good abstractions are missing from the 

design, or erode as the system evolves, the resulting program grows barnacles of complexity.  

The user is then forced to master a mass of spurious details, to develop workarounds, and to 

accept frequent, inexplicable failures.  The core of software development, therefore, is the 

                                                      

4 For instance computer operating systems present an abstraction known as the single-threaded process - which 
serves as a container for all applications running on the computer.  Under typical circumstances, this 
container allows each program to behave as if it were the only program running on a perfectly deterministic 
machine, even though it is continually contending for resources on a machine whose behavior is far from 
predictable or repeatable in practice. 
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design of abstractions.  An abstraction … is a structure, pure and simple – an idea reduced 

to its essential form.  [77] 
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3.6 Network Representations of Important Architectural Patterns 

We have created the following figures to depict hierarchy, modularity, and layering as embodied in different 

types of directed network graphs.  Each network is shown using two representations.  Pictures on the left are 

traditional network views with letters as nodes and directed arrows as arcs.  Pictures on the right are square 

matrix views with nodes contained in an ordered list, and arcs represented as dots in the square matrix at 

(―from node‖, ―to node.‖)  This ordered matrix representation (known as a Design Structure Matrix or DSM) 

is widely used in engineering design circles.  [30, 78]  

Figure 1 and Figure 2 show a hierarchical tree with node L as a root node.  Trees are a common type of 

hierarchy.  Note that in an appropriately sorted DSM, a tree-hierarchy appears as a band starting somewhere 

along the middle of the left hand side and moves towards the lower right corner. 

 

Figure 1: Hierarchical Tree as Network 

 

Figure 2: Hierarchical Tree as DSM 
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Important note about network notation: For those already familiar with DSMs, it is very 

important to note that the conventions used in this report are somewhat different than those 

used in much of the existing DSM literature.  This is because DSMs originated in the hardware 

community, but the software community follows slightly different network drawing 

conventions.  While the DSMs shown in this report (e.g. Figure 2) follow typical DSM 

conventions, the corresponsding ―traditional network views‖ (e.g. Figure 1) have arrows 

pointing in the opposite direction of what is typically shown.  This arises from the fact that 

software call graphs show arrows pointing from a calling function to one that is called.  Figure 1 and 

Figure 2 could both represent a call from within function L that invokes function J.  In this 

scenario, function J does useful work and returns the result of that work back to function L.  In 

electro-mechanical network representations, however, arrows are typically drawn from a provider 

J to the recipient L. 

The convention used in this thesis is consistent with the call graph convention that is often used 

in the software DSM literature (see MacCormack‘s conventions [79] for an example) and 

different that what is found the hardware DSM literature (see figures 1.3a and 1.3b in Eppinger‘s 

book[78].) 

Figure 3: Note about DSM and Network Conventions 
 
 
Figure 4 and Figure 5 show four independent tightly coupled modules5.  Codependence between nodes within each 

module shows up as bidirectional arrows in the network view and symmetry in the DSM.  Modules have high 

internal cohesion and low external coupling. In an appropriately sorted DSM, modules appear as distinct and 

identifiable blocks arranged along the diagonal.  (If the nodes in the DSM were sorted differently, these 

modules might not be evident.) 

                                                      

5 For simplicity, we have not shown links between modules.  In order to be one system rather than four separate ones, 
these modules should be loosely connected in some way. 
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Figure 4: Modules as Network 

 

Figure 5: Modules as DSM 
 

Figure 6 and  

Figure 7 show layers, platforms, or abstractions.  As can be seen in the DSM, in some senses this structure is 

a combination of hierarchy and modularity.  Nodes in a higher layer can directly access nodes in a lower layer, 

but connections do not generally skip layers.  (Modular access within the same layer is omitted for the sake of 

clarity.) 
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Figure 6: Layers as Network 

 

 
Figure 7: Layers as DSM 
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Figure 8 and Figure 9 show a hierarchy of modules.  This mixed system depicts an organization of components 

that characterizes many complex systems.  It incorporates some of the principles of large-scale system design 

articulated in different ways by Simon, Parnas, and others.  Herbert Simon describes a nearly decomposable 

hierarchy of ―intermediate forms.‖ [48, 51]  Simon says that natural and artificial systems are often organized 

in this manner because these structures provide stability and other evolutionary advantages.  These 

intermediate forms are modules with high internal cohesion and low external coupling, thereby endowing a 

system with what David Parnas called ―information hiding‖ properties [66, 69] 

 

Figure 8: Hierarchy of Modules as Network 

 

Figure 9: Hierarchy of Modules as DSM 
 

3.7 Networks in System Architecture 

Because complexity controlling features in system architectures – notably hierarchies, modules, and layers – 

can all be thought of as types of networks, many in the systems community have begun to reason about 

products as networks of interconnected components.  Strogatz says that ―from the perspective of nonlinear 

dynamics, we would also like to understand how an enormous network of interacting dynamical systems — 

be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and 

coupling architecture.‖ [80] System architects have begun to lean heavily on the language of networks when 
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describing engineering systems and their properties.  The recent report about system architecture released by 

MIT [55] employs the term network 40 times.  This makes sense because many important engineering systems, 

including the Internet, are literally networks.  [81, 82]  In addition, the report contains references to types of 

networks including hierarchy which appears 11 times, tree which appears 9 times, layer which appears 11 times, 

module which appears 59 times, and hub which appears 6 times.  The MIT Architecture committee tells us that 

―[s]ome architectures can be represented fairly completely as networks. In such cases, a lot can be determined 

about their behavior from graph theory.‖ After all, if architecture is an ―abstract descriptions of entities… and 

[their] relationships‖, then a network - defined by its nodes and arcs, is a natural corollary.  In addition, the 

group argues persuasively that many of the properties we care to measure and manage over a system‘s 

lifecycle including ―robustness, adaptability, flexibility, safety, and scalability… might be measured using 

network models of a particular architecture.‖ [55] 

3.7.1 Design Structure Matrix Methods for Complex Systems 

The Design Structure Matrix (DSM) is a square matrix network representation that has been used to capture 

project dependencies6 and coupling in a product architecture.  DSMs represent project tasks or system 

elements as network nodes and represent task dependencies or coupling between parts as arcs.  Nodes are 

represented as an ordered list of length N.  Arcs are stored in a square matrix with size <N, N>.  An arc is 

added to the network by inserting an entry at a point <from node, to node>, thereby creating an association 

between two nodes in the ordered list. [30, 31, 58, 78, 83] This representation makes certain features visible 

that cannot be seen in a traditional ―node and arc‖ view.  Eppinger and Browning call the DSM ―a network 

modeling tool used to represent the elements comprising a system and their interactions, thereby highlighting 

the system‘s architecture.‖ [78] Unlike typical pictures of networks, DSMs allow engineers to see the 

topography and density of interconnections in and between different parts of a system.  To illustrate, Baldwin 

and Clark‘s figure of a laptop shown in Figure 10 [5] highlights the interconnections between different parts, 

                                                      

6 When used to represent project dependencies, these square matrices might be called ‗Task Structure 
Matrices‘ (TSMs) rather than DSMs. 
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shows how those parts are clustered into modules, and points out circular interactions between parts in 

different modules that should ideally prompt cross-team coordination. 

 

Figure 10: DSM of a Laptop Computer (From Baldwin & Clark) 
 

The DSM community was not the first to use matrix-based representations of technical networks.  (Prior 

examples of square matrices depicting modularity turn up in Bergland‘s and Simon‘s work for instance. [51, 

84])  The DSM community has, however, pioneered the application of square matrices as a practical tool in 

large-scale systems analysis, engineering design, and project management.  Browning tells us that the 

―[s]ystems engineering of products, processes, and organizations requires tools and techniques for system 

decomposition and integration. A design structure matrix (DSM) provides a simple, compact, and visual 

representation of a complex system that supports innovative solutions to decomposition and integration 

problems. The advantages of DSMs vis-à-vis alternative system representation and analysis techniques have led 

to their increasing use in a variety of contexts, including product development, project planning, project 

management, systems engineering, and organization design.‖ [85] Eppinger and Browning survey the field in 
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Design Structure Matrix Methods and Application. [78] This book gives many examples of their application 

including a Pratt & Whitney jet engine [86-88], Xerox digital printing technology [89], and the Mozilla internet 

browser. [8] 

3.7.2 DSMs and System Structure 

Although DSMs are now commonly used to represent product architectures, they were first used in project 

management to represent tasks and their dependencies. [30].  By using a network representation with the 

ability to capture feedback, Steward overcame an important limitation of the commonly used ‗Critical Path 

Method.‘ [90] These ―task structure matrices‖ (TSMs) made it easier to explore rework and design iteration. 

[31] A number of subsequent innovations allowed TSMs to be used in project estimation.  [32-34]   

The use of DSMs as tools for analyzing the interconnectivity patterns inside a technical architecture began 

with Pimmler and Eppinger.  They devised a method using the DSM to identify and evaluate alternative 

modularizations. [58] Their method involved:  

 Identifying parts, their connections, and the functions that those parts perform. 

 Documenting the various physical and functional interconnections in a DSM. 

 Ranking those interconnections based on their desirability or undesirability.   

 Clustering or ―chunking‖ the connections or interactions into different possible groupings or 

―modularizations‖ based on the strength of interactions between parts.   

Pimmler and Eppinger focused on generating many alternative architectures early in the design process so 

that various schemes for decomposing design tasks, defining modular boundaries, and allocating design tasks 

to teams could be considered early in the process. 

In Design Rules: The Power of Modularity, Baldwin and Clark use DSMs to illustrate the means by which 

modularity creates value for innovators. [5] This book illustrates its case using many DSMs starting with a 

coffee mug and moving up to examples including a graphics controller, a motherboard, and a laptop 
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computer.  Baldwin and Clark use these DSMs to reason about the economic value of modularity in a design 

and illustrate a means by which modular designs create that value. Baldwin and Clark argue persuasively that 

the modular design of the IBM/360 [91] fundamentally transformed not only computer architecture, but also 

the structure and scale of the hardware and software industry by increasing the return on investment of R&D 

activities.7 Others have built on this line of research by exploring how network coupling impacts the value of 

an architecture [92] and the rate at which systems can improve. [93] 

Novak and Eppinger explore the relationship between product complexity and vertical integration. [94] They 

define the complexity of a system as a function of its component count, component interaction count, and 

novelty.  Their complexity calculations include coupling because integral systems are more likely to experience 

change propagation and include novelty because new systems likely contain design interactions that have not 

yet been discovered.  They find ―that in-house production is more attractive when product complexity is 

high, as firms seek to capture the benefits of their investment in the skills needed to coordinate development 

of complex designs.‖  Their findings seem consistent with Baldwin and Clark‘s observation that the 

modularity built into the IBM/360 reduced architectural complexity to such an extent that it caused the 

vertically integrated industry to disintegrate and restructure in a manner consistent with the modular [5] and 

layer/platform [75] structures we observe in computers and software today.  (IBM‘s innovation was 

enormously profitable in the short term, but opened the door for new competitors and ultimately caused 

them to lose control of some of the most valuable subcomponents within the architecture.)  Novak and 

Eppinger‘s observations are also consistent with a study describing the re-integration of the bicycle drive-train 

industry in response to a novel and highly integral innovation [4]. 

3.8 Exploring the Network Structure of a Software System 

                                                      

7 Prior to the development of the IBM/360 the computer industry was vertically integrated with each 
manufacturer creating highly integral designs.  Every generation of computer defined a new set of interfaces, 
operating systems, and programming languages - each incompatible with the last.   
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Researchers have recently begun using networks to explore the architecture of large software systems.  

Valverde found that software dependency networks have ―small world‖ characteristics and are ―scale-free‖ 

for nodal in-degree (but not out-degree). [95, 96]  Sullivan et al. applied design rules theory to Parnas‘ classic 

modularity example to illustrate the value of information hiding.  [97] Settas and Stameleos used DSMs to 

explore software ―anti-patterns.‖ [98].  MacCormack, Rusnak, and Baldwin conducted multiple studies 

exploring large-scale system evolution and modularity. [8, 9, 79, 99]   

When researchers investigate software architectures empirically, they generally construct networks by using 

―call graph extractors‖ to pull entities and relationships out of software source-code.  Dependencies are then 

fed into network or matrix manipulation software for analysis. [100, 101]  Call graph extractors automate the 

process mining software dependencies, making the process much more efficient than manual construction 

and eliminating human error from the process.  Once software DSMs are extracted, they can be analyzed 

alongside the contents of other databases that store information about the development process such as 

―bug-tracking‖ and ―version control‖ systems.  Combining information from these data-sources makes 

longitudinal analysis possible by giving researchers the ability to ―track the evolution of a design over time.‖ 

[8] 

MacCormack et al. construct DSMs by using source-code files as network nodes and inserting arcs between 

them when software dependencies (such as function calls) span file boundaries.  Once a software DSM is 

constructed, MacCormack computes ―visibility‖ metrics (based on transitive closure) designed to reflect the 

modularity of architectures and the coupling of individual components.  These methodological innovations 

allowed MacCormack, Rusnak, and Baldwin to empirically measure the level of modularity in a large system, 

to compare levels of modularity over different versions of the same system, and to compare modularity 

across systems.  Because MacCormack‘s metrics and techniques are used in this study, they will be described 

in detail in the ―Methods‖ section of this report rather than being elaborated upon here. 

MacCormack, Baldwin, and Rusnak used software DSM methods to explore the evolution of the Mozilla 

Internet browser, finding a substantial decrease in coupling after a refactoring effort that was undertaken to 
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make its source code more maintainable. [8] They expanded upon these techniques in a variety of other 

studies.  In one, they explored the structure of matched pairs of comparably sized open-source and 

proprietary systems that performed identical tasks, finding that open-source systems were consistently more 

modular than their proprietary counterparts. [99] In another study, they tracked changes over six releases of a 

software system, finding that more tightly coupled components are ―harder to kill‖ (more likely to persist 

from version to version), ―harder to maintain,‖ and ―harder to augment.‖ [9] In another study, they extracted 

the architecture of over 1000 software releases of 19 applications to survey system evolution.   They found 

that a strong majority of systems (approximately 80% in their sample) have a ―core-periphery‖ structure – 

characterized by a network in which some files formed a tightly and cyclically coupled grouping – or core - 

while others sat on the periphery.  Some cores remained stable while structure grew around them, while 

others grew with the size of the system. [79] MacCormack also used software DSMs to study the duality 

between organizational and product architecture.  [99] Other studies have followed in this research vein.  

Lamantia et al. conducted two case studies finding evidence that software modularity was valuable because it 

allowed different regions of code to evolve at different rates and allowed firms to substitute ―at risk‖ modules 

with minimal impact elsewhere.  [102, 103]  Akaikine explored the impact that the complete rewrite of a 

major commercial software product had on maintenance costs.  He found both a substantial decrease in 

coupling and a substantial improvement in the performance of the maintenance organization. [104] Sosa, 

Browning, and Mihm explored the dynamic evolution of the Ant system architecture. [105] They describe an 

experimental phase before software architecture settles, the emergence of a dominant configuration, and the 

appearance of limits to growth and complexity saturation ―which might call for a refactoring of parts of (or 

the entire) product architecture.‖ 

3.9 Some Definitions of Complexity 

Summers and Shah (both mechanical engineers) usefully summarize a few of the many perspectives on 

system complexity in the following quoted bullets [106]: 
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 ―The whole exceeds the sum of the parts. Complexity should include how the parts are assembled 

into the whole. This coupling between the parts leads to the view that complexity does not include a 

simple additive property from the components to the assembly, but rather there are emergent 

properties that are only found collectively in the assembly. This view is predominantly for studying 

the complexity of the design product.‖ 

 ―Complexity is a measure of the minimum amount of information (bits) required to describe in the 

given representation.  The amount of information required minimally to describe something in a 

specific representation suggests a lower bound of complexity for that which is described. Any 

information in excess of this is superfluous or redundant.  This view of complexity ignores the 

possible interconnectedness of the information and how hard or difficult it is to parse the minimal 

representation.‖ 

 ―Complexity is the amount of effort required to manufacture or design. This view of complexity 

looks at complexity from how difficult it is to solve a problem, be that manufacture or design. As 

more effort is required, the complexity increases.  This suggests that the complexity of a design 

product or design problem are related to the design process.‖ 

 ―Complexity is a measure of the tasks required to achieve some function (or components). This view 

of complexity is equivalent to algorithmic complexity. A complexity measure should be developed 

with respect to the number of functions and the level at which they are found that are required for 

satisfying the design requirements.‖ 

 ―Complexity is a measure of the phase change between order and randomness (entropy). This view 

of complexity accounts only for the information compaction. It does not address the difficulty 

associated with reconstructing the minimal chain of information into the original string. Consider the 

complexity (entropy) associated with a random string of letters and the complexity (entropy) 

associated with this paper. The two strings may be of equivalent size, thus yielding equivalent levels 

of complexity. However, the effort required to produce the paper extended across years, while a four 

line random number generator may be used to create the random string.‖ 
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 ―Complexity is a measure of the number of basic operations required for solving a problem. The 

complexity of the problem is associated with the computational complexity of the best-known 

algorithm for solving the problem. This computational complexity is proportional to the time it takes 

for an implemented algorithm to solve the design problem given that the basic operations are 

roughly equivalent in time.‖ 

These varied perspectives (or others like them) often form theoretical foundations on which many existing 

complexity metrics rest. 

3.10 Measures of Software Complexity 

In response to a general consensus that complexity in its various forms had a tremendous influence on quality 

and cost, practitioners in the 1970s began to try to devise software complexity metrics.  This effort has 

continued through the present day.  While each metric paints only an incomplete picture, only capturing some 

important features of the code while ignoring others, each attempts to measure some important concept 

related to program or psychological complexity.  The oldest and most commonly used metrics are component 

based.  They measure some property internal to identifiable elements within a software system. Agresti says 

that ―Most of this work… has been focused on a single characteristic or oriented toward program modules 

rather than large software systems or subsystems as units of observation.‖ [107] More recently, some less 

commonly used architectural or structural metrics have been devised to measure the interrelationships between 

those elements.  These structural measures look at coupling, cohesion, modularity, interfaces, cycles and other 

system-level attributes in a software system.  Some component-based and structural metrics devised over the 

years have been found to relate to quality, maintainability, and other desirable project and product attributes.   

3.10.1 Component-Based Complexity Metrics 

The simplest (but also crudest) measure of complexity employed is the raw count of lines of code (LOC) in a 

program, file, function, class, method, or other programming construct.  LOC is a reasonable metric for use 

in project estimation because all else being equal, it will be strongly correlated with the effort required to 

create a working piece of software.  LOC based metrics have earned a bad reputation in some quarters, not 
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because they are not useful, but because their use creates perverse incentives when applied inappropriately for 

rewarding individual productivity.  The software engineering community has generally abandoned this 

practice for the simple reason that the metric is easily gamed in a way that leads to bad programs.  LOC 

metrics are still valuable for estimation purposes, and for estimating productivity in a statistical sense, so long 

as the metric is not simultaneously used to judge individuals.  Some studies have found a relationship between 

module size (in LOC) and defect density, possibly because more complex code requires more room or 

because larger modules are more complicated. [108]  

Two early metrics that received wide attention were those devised by Halstead and McCabe.  Halstead 

proposed a set of interrelated metrics, also based on a static analysis of code that measured a program‘s 

operands and operators and derived measures of its ―volume,‖ difficulty to understand, and the effort 

required to write it.  [109] Unfortunately, Kan says that ―empirical studies provide little support to the 

[Halstead] equations.‖ [108]  

McCabe proposed a ―cyclomatic‖ complexity metric that has proved more successful.  McCabe assigns a 

number to a ―structured program‖ or block of executable code based on a static analysis of the number 

linearly independent execution paths that can be followed as a program executes.  In modern programming 

languages, McCabe scores typically apply to procedures (called functions in C) or class methods.  Alternative 

paths through a procedure result from conditional branching statements (if statement, switch/case statement, while 

loops, etc.).  [110] Gill and Kemerer provide the following four-step recipe for computing the original version8 

of McCabe‘s metric.  [111].  We will quote from their definition: 

1. Increment one for every IF, CASE or other alternate execution construct 

2. Increment one for every Iterative DO, DO-WHILE or other repetitive construct 

3. Add two less than the number of logical alternatives in a CASE 

                                                      

8 A common variant (the one used as a control variable in this study) excludes switch/case statements from 
consideration in the McCabe score.  This is often referred to as ―Modified McCabe cyclomatic complexity.‖ 
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4. Add one for each logical operator (AND, OR) in an IF 

McCabe asserted that his number could be used to estimate the effort required in test coverage.  He also 

suggested that cyclomatic complexity for procedures or methods should be kept below the value 10 so that 

they remain understandable and testable. A classification scheme has been devised to bin procedures into 

four general types based on their McCabe scores. [112] Procedures with scores of: 

 1-10 have ―low‖ complexity 

 11-20 have ―medium‖ complexity 

 21-50 have ―high‖ complexity 

 51 and above are considered ―untestable‖ 

McCabe‘s metric has been positively related to defect density [113-115] and the productivity of developers 

doing maintenance on previously shipped code. [111] Many firms now use McCabe‘s scores as a means of 

identifying problematic code.   

A variety of similar syntactic metrics have emerged with the advent of new languages and methodologies. 

[116, 117].  Many studies have been conducted to test the relationship between complexity metrics and 

quality, maintainability, and other non-functional attributes of code.  Some complexity metrics have been 

found to correlate with quality [118, 119] or maintenance effort [120, 121] Due to the realization that LOC, 

McCabe‘s, Halstead‘s, and other syntactic constructs each might capture certain limited aspects of code 

complexity, composite metrics have been devised as well.  Card and Agresti found that a metric combining 

information about control flow (as measured by fan-out) and information flow (as measured by the size of 

the interface or number of  I/O variables) correlated strongly with defect density.  [119, 122] Another index 

was created that has been shown to be a good indicator of software maintainability. [123] A variety of other 

indices have been created, some of which have been calibrated to predict various ilities.  Some of these indices 

are expressed as complex polynomial equations and can serve as indicators pointing developers to modules 

that may be in need of attention. 
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3.10.2 Structural Complexity Metrics 

In addition to syntactical metrics, a number of lesser-used structural metrics exist, some of which relate to 

levels of coupling and cohesion.  [124, 125]  Two metrics of note are ―fan-in‖ and ―fan-out‖ [126] which are 

measures of the direct structural connectivity between components.  Fan-in counts the number of components 

that depend upon a component, while Fan-out counts the number of components that are depended upon by 

a component.  When looking at the degree distributions of software networks, Valverde has found that 

software dependency networks have ―small world‖ characteristics and are ―scale-free‖ (obeying a Power-law 

distribution) for nodal in-degree (but not out-degree).  Kan cites studies indicating that Fan-out correlates 

with defects (because it is a measure of the number of upstream components) but suggesting that Fan-in does 

not.  [108] 

MacCormack, Baldwin, and Rusnak devised a procedure for classifying software components (such as files) 

based on their level of direct and indirect coupling with the rest of a software system. [8, 9]  Their directed-

network-based classification scheme identifies ―core‖ nodes - those that are contained within the largest 

network cycle.  In some senses, this classification scheme can differentiate between software source code files 

whose interactions with the rest of the system are mediated through hierarchical or modular constructs and 

those that are more tightly coupled to disparate parts of the system.  (This metric only captures some 

important properties related to hierarchy and modularity.)  Because the MacCormack approach is used to 

operationalize the notion of ―architectural complexity‖ in this study, we will give a detailed description later in 

this report. 

3.10.3 Criticism of Complexity Metrics 

Complexity metrics have generated a large amount of debate for a number of reasons.  Some have highlighted 

the limitations of these types of metrics.  Curtis et al. conducted experiments to test their relationship with 

―psychological complexity.‖  [22] Under a limited set of experimental conditions, Curtis found that program 

size, cyclomatic complexity, and Halstead metrics correlated with programmer accuracy and time to task 
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completion.  His results held only when the programs were unstructured, contained no comments, and the 

developers being tested were inexperienced, however.  Curtis concluded that things like good variable names, 

comments, and indentation play a strong role in reducing psychological complexity even if they are not 

considered by the McCabe and Halstead metrics.  Furthermore, a lack of correlation for experienced 

developers led the researchers to theorize that senior developers have mental schemas that they apply during 

program analysis in the same way a chess-master evaluates a board.  Because these developers ‗see‘ higher-

level structures and behaviors rather than individual symbols in the code, measures that are easily calculated 

from small pieces of code might have limited explanatory power.  Curtis said that to be effective, metrics 

should consider aspects of psychological complexity in their formulation.  Another limitation of metrics is 

that there are many important desirable properties of software that nobody knows how to measure.   

Furthermore, we lack a clear explanation for why some complexity metrics correlate with quality attributes 

even when they do.  This is especially true for composite metrics.  Because many metrics lack an underlying 

theory of programming or psychology, many believe that they are only crude indicators that are often useless 

due to a lack of robustness, normativeness, or prescriptiveness. [108, 127].  Another important limitation of 

those traditional metrics is that they are local in nature.  Due to computational limitations, most component-

based metrics quantify properties of a single function, method, class, or source file in isolation without 

considering the complexity of the relationships between those isolated units.  These metrics fail to capture the 

complexity and complicatedness created by inter-component coupling patterns – both of which are important 

factors in software development and maintenance. 

3.11 The Difficulty of Placing a Value on Redesign 

In an ideal world, engineers evaluating system designs would judge alternatives by doing a full accounting of 

the long-term financial and other stakeholder value that would be generated by each.  This would require the 

designer to estimate the benefits of system functionality and performance characteristics as well as the costs, 

including the cost of complexity, within the design.  Multiple objectives could be defined, and the net present 

value (NPV) of design alternatives could be estimated, reasoned about, and optimized.  Some promising 
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efforts have been made to apply financial valuation techniques to software project decision-making. [128] 

Unfortunately, the use of objectively rational decision-making models is unrealistic or impractical under most 

circumstances.  As a result, normal decision-making biases can tip scales in favor of sub-optimal choices 

because some costs and benefits are salient to designers and managers while others are not.  While the benefit 

of additional system performance might be immediate, clear, and calculable, some costs of complexity are 

hard to understand, long-term in nature, and may be borne by someone other than the original system 

creator.  Under these circumstances, an organization may be biased against incorporating complexity-

controlling (but more expensive or performance limiting) structures in an initial design even if the NPV of 

this alternative were objectively superior.   

Similar issues arise during ongoing maintenance of complex systems, many of which are incredibly long-lived.   

Whitney et al. tell us that ―[s]ometimes, architectures are designed or evolve to minimize complexity, but, as 

systems grow in size, a point is usually reached where a system‘s complexity becomes overwhelming, 

imposing a limit on what one can do to operate the system, predict its behavior, or change it.‖ [55] Scaling 

limits, [105] changing requirements, and other stresses during maintenance can cause systems to ―decay‖ over 

time.  Natural entropy can erode modular boundaries or connect components whose interactions were 

previously mediated through hierarchies and layering schemes. These systems will become brittle and the 

likelihood of unwanted change propagation will increase [129, 130] A system may become less coherent, 

defects might become more frequent, and the productivity of engineers maintaining it might decline.  When 

this occurs, some engineers will call for a design overhaul (known as a ―refactoring‖ [131] in the software 

community) to improve the situation going forward.  Unfortunately, managers dividing scarce resources 

between developing new features, defects correction, and redesign will tend to favor the first two options.  

Although those advocating redesign may intuitively understand that refactoring is in the long-term interest of 

the firm, they have no good way to support this intuition in a quantifiable manner.  They cannot easily draw a 

clear line between complexity reduction today and fewer defects or improved effectiveness tomorrow.  
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There are other reasons for an underinvestment in redesign.  The costs imposed on the development 

organization by problems in an existing architecture may be invisible – hidden in the form of tacit and 

unquestioned performance expectations, norms, processes, or routines. [132] A company may have no basis 

for comparison – no means of weighing the cost of maintaining their current system against some 

hypothetical alternative implementation.  The true cost of not confronting complexity within an existing 

design might be unconsidered and unknown.  Calls to refactor might only come after high-profile defects or a 

noticeable erosion of productivity.  Under this type of threat, however, the group may become defensive and 

feel pressure to engage in ―fire fighting‖ to improve short-term performance or display heroics under 

scrutiny.  Because redesign is a ‗worse-before-better‘ proposition, it runs counter to these instincts. [133-135] 

Although refactoring might be incredibly valuable in the long-term, it will offer few immediate rewards and 

will consume the attention of many highly skilled employees.  Because such an endeavor often defies short-

term individual, managerial, and investor instinct, pursuing this course requires visible and sustained 

executive-level support. 
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4 Conceptual Model, Gap in the Literature, and Hypotheses 

In this section, we will articulate a conceptual model linking the complexity within an architecture to specific 

costs incurred by an organization including quality problems, lower productivity, and higher staff turnover. 

We will also look at prior work that has been done to establish this link, identify gaps in that literature, and 

state three testable hypotheses. 

4.1 Conceptual Model 

Some designers of real-world complex systems may encounter persistent problems in parts of the system they 

interact with.  Problem components might require more defect corrections.  They might be rigid, inflexible, 

or hard to change.  They might be brittle – subject to break if perturbed.  They might be unstable – requiring 

continual change to accommodate various demands unrelated to improved functionality.  They may also be 

incomprehensible – hard to understand and work with.  Software developers working in problematic files 

may have trouble keeping track of how the code operates.  Their productivity may slip.  They may trigger 

more unintended side effects and may introduce more defects.  They may have trouble making educated 

guesses about when work will be completed.  Their vantage point may lead them to perceive their portion of 

the system as inelegant, inconsistent, or conceptually incoherent relative to other parts in the system.  It is 

conceivable that designers who routinely interact with these issues may even have slower learning curves, 

lower job-satisfaction, and a higher likelihood of leaving the firm. 

 

Figure 11: Conceptual Model 
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In this work we hypothesize that these problems can be caused by complexity in the system‘s architecture.  

We differentiate this architectural complexity from more traditional inward-looking metrics, such as McCabe‘s 

score, that are designed to capture the complexity contained within individual components, files, functions, 

classes, or methods when considered in isolation. Architectural complexity is outward facing in that it aims to 

capture the complexity of the connectivity structure between a component and the rest of the system. 

The architectural complexity of a component is higher when it is in a positioned in a region of the system 

with a relative absence of canonical structures known to keep systems stable and within the bounds of human 

understanding: hierarchy and modularity, among others.  Architecturally complex components may have been 

initially positioned within integral parts of the system, or entropy in the development process may have 

degraded interfaces and connected formerly isolated segments of the system.  If interconnectivity patterns 

contain architecture spanning cycles, feedback may cause design iterations or gridlock during ongoing 

maintenance and development.  Files that are positioned in more complex regions of a system architecture 

should be harder to work with, and hence more costly to the development organization. 

Useful metrics for operationalizing the concept of architectural complexity are the visibility metrics developed 

by MacCormack, Baldwin, and Rusnak.  These metrics can be used to categorize files based on how reachable 

they are within the network of components and whether they are positioned within large cycles. [8, 9] 

4.2 Complexity and Quality 

In the first analysis in this thesis we explore the link between architectural complexity and defect density.  

Many previous studies have looked at determinants of software defects for good reason.  Quality problems 

have plagued software since its invention, leading many academics and practitioners to repeatedly declare the 

field of software engineering to be in a state of crisis.  Major project failures and the loss of human life due to 

software errors are seen as a much too common occurrence. [6, 116, 136-139] 
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Complex software is difficult to design correctly.  While some defects are attributable to bugs introduced 

during the coding process, many are caused by incorrect, incomplete, or inelegant requirements and 

specifications.  To complicate matters further, Brilliant et al. found that many defects are caused by 

complexity in the problem domain itself.  Certain required processes or algorithms are harder to code 

properly than others, regardless of programming methodology, decompositional strategy, or language 

employed during software design. [140] Subtle errors at architectural interfaces may be especially damaging 

because they may be found late, be harder to fix, and therefore cost substantially more to correct.  These 

types of issues may only become apparent during system integration. [141] Unfortunately, the cost of fixing a 

defect has a geometrical relationship to the development stage in which it is found, which potentially makes 

them extremely expensive. [142] 

Complex software is exceedingly hard appropriately validate.  Some of these difficulties arise from properties 

unique to software that make it incredibly difficult to test.  Many traditional means of managing the quality of 

electromechanical systems do not work in the software domain.  Firstly, because software has a discrete 

(rather than continuous) nature, tracing the possible paths through code or enumerating the possible system 

states results in rapid combinatorial explosion.  In physical systems, the continuous nature of products allows 

testers to collapse the state-space by making various logical inferences. Furthermore, most risk models 

developed for physical products focus on the probability of individual part failures due to wear.  In software 

there is no such thing as ―wear.‖  Software defects are in some sense always caused by design or specification 

failure.  As a result, statistical models imported from the electro-mechanical domain are sometimes useless.  

[6, 143] 

Over the years software engineers and computer scientists have taken different approaches to addressing 

quality issues.  One school of thought, pushed by Dijkstra, Hoare, and other mathematically oriented 

computer scientists, has advocated for the use of formal methods and proofs of program correctness.  [144, 

145]  Such methods have gained traction in the kernels of mission critical applications, but have been viewed 

as impractical for larger general-purpose software.  Most large software projects rely instead upon system and 
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unit testing regimes.  [146-148] While such testing is useful, it can never be perfect.  Due to combinatorial 

explosion it is impossible to test even many reasonable conditions. Given the impossibility of full test 

coverage, an organization must consider the level of acceptable risk when determining how many resources to 

dedicate to testing. [149] Disagreements between the formal methods and testing camps have subsided to a 

large degree, and advances have been made in both the theory of testing [150] and the practical utility of 

formal methods [77] over time. 

Various studies have been conducted to find relationships between development process measures, software 

product measures (including complexity of various sorts), and defect density.  Unsurprisingly, more defects 

are found in files that are larger and that experience more overall development activity. [151] These strong 

predictors are often included as controls in statistical models looking at defects in a file.  There is 

disagreement about the relationship between a file‘s age and its defect density.  Graves found that older files 

had fewer bugs [152] but Kemerer and Slaugher [115] found that they had more.  A variety of development 

process metrics have been found to correlate with defect density as well.  Mockus et al. found that changes 

that modify files in multiple subsystems are more likely to introduce defects, suggesting that misalignment 

between functional relationships and structural relationships in the code increases risk. [153] Eaddy et al. 

obtained a similar result, finding that code implementing ―cross cutting concerns‖ has more defects. [154] 

Cataldo et al. found that files that have many ―logical‖ dependencies (i.e., over a defined time period, changes 

to those files are submitted together) have more defects. [151] Interestingly, however, they also found that if 

groupings of files with logical dependencies form stable clusters, then defect density goes down substantially.  

This suggests that natural modules that successfully contain functional changes within their borders 

successfully manage complexity.  Cataldo also found that changes that must be jointly implemented by 

multiple people are associated with greater defect density in files.   

As previously noted, McCabe‘s cyclomatic complexity number has been found to correlate positively with 

defect density. [113-115] Functions and class methods with high McCabe scores are hard to understand.  

They are therefore more likely to contain errors and more likely to be modified incorrectly.  They are also 
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harder to test appropriately due to a combinatorial explosion of execution paths. Card and Agresti found that 

a metric combining information about control flow (as measured by fan-out) and information flow (as 

measured by the size of the interface or number of I/O variables) correlated strongly with defect density. 

[119, 122]  Code with high intra-module cohesion and low inter-module coupling has been found to have 

fewer defects as well. [155-157] 

As previously noted, large-scale systems structured as nearly decomposable hierarchies of loosely coupled 

modules are thought to possess a number of significant evolutionary advantages that should lead to fewer 

defects. [48, 51, 69]  Much of the prior work that establishes this link has been theoretical and descriptive in 

nature however.  Despite a large body of literature that has taken a quantitative approach to exploring the 

relationship between various process, syntactic, and structural predictors of defects, little of work has been 

done to quantitatively explore the relationship between the defects experienced by a software component and 

the high-level architectural properties of the system in which it rests. One notable exception is a recent study 

conducted by Sosa, Mihm, and Browning in which cyclical relationships (which are disallowed in hierarchies) 

between Java classes in an open-source software project were found to predict future defects. [158] No 

similar studies have been conducted on a large commercial codebase developed by a large group of paid 

software engineers, however.   

This leads us to our first hypothesis: 

Hypothesis 1: Software files with higher levels of architectural complexity are more error prone.  Complex files will be 

modified to fix defects more often than other files. 

4.3 Complexity and Productivity 

In our second analysis we explore the link between architectural complexity and developer productivity.  The 

need to understand productivity has been driven to some extent by the project management community.  

Managers need the ability to do reliable cost and schedule estimation for planning and contracting purposes.  
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Within this context, the focus has been on team or organizational productivity.  Another large body of work, 

much of it theoretical, qualitative, and descriptive, has looked at the impact of system architecture on the 

effectiveness of design and maintenance organizations.  In addition, some researchers have done empirical 

and experimental work to explore determinants of individual productivity.  A portion of that work has looked 

at the link between productivity and various forms of complexity. 

4.3.1 Software Cost and Schedule Estimation Techniques 

A variety of techniques have been devised to help project planners estimate cost and schedule for software 

development projects.  Kemerer [159], Jorgenson [160], and Boehm [161] have each written papers surveying 

activity in this field.  In 1987, Kemerer noted that Boehm‘s COCOMO model [162] and the SLIM model 

[163] were in wide use and had general applicability. Other techniques that have come along since that time 

include Delphi, a rule-based approach, system-dynamics-based approaches pioneered by Abdel-Hamid and 

Madnick [27, 28], COCOMO II (an update to make COCOMO suitable for estimating object-oriented 

software projects among other things) [161], and Agile estimation techniques. [164] Boehm says that people 

devising these estimation techniques ―all faced the same dilemma: as software grew in size and importance it 

also grew in complexity, making it very difficult to accurately predict the cost of software development.‖ [161] 

Boehm continues:  

Just like in any other field, the field of software engineering cost models has had its own 

pitfalls. The fast changing nature of software development has made it very difficult to 

develop parametric models that yield high accuracy for software development in all domains. 

Software development costs continue to increase and practitioners continually express their 

concerns over their inability to accurately predict the costs involved. One of the most 

important objectives of the software engineering community has been the development of 

useful models that constructively explain the development life cycle and accurately predict 

the cost of developing a software product. 
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This problem is far from academic.  In 2006, Laird and Brennan reported that the average project overran its 

budget by 45%, only 28% were delivered on time, and 23% of projects were killed. [165, 166] Boehm says 

[161] that planners using COCOMO or other estimation models glean information from past projects and 

combine it with information about the current design, the available workdays, team size, team skills, and labor 

costs to produce estimates for effort, schedule and cost. This process generally takes place during or 

immediately after the architecture phase of a project.  Many of these models take as inputs: 

 Estimates of a project‘s size in lines of code (LOC), instructions, function points, or object-oriented 

constructs 

 Estimates of an average developer‘s productivity in terms their ability to deliver LOC, instructions, 

function points, etc. per unit time. 

 Crude multipliers or scaling factors to account for customer complexity, system complexity, novelty, 

etc. 

When studying the accuracy of estimation models, Kemerer found that ―models developed in other 

environments do not work very well uncalibrated.‖  Organizations wishing to use models must collect 

historical data internally before they can be very useful.  He noted that the best models, once calibrated, 

worked reasonably well, ―explain[ing] 88 percent of the behavior of the actual man-month effort [159]. 

Kemerer concludes by noting what he believes to be the fundamental weakness of these estimation 

approaches. [159] 

[A]lthough improving estimation techniques within the industry is a worthwhile goal, the 

ultimate question must concern how the productivity of software developers can be 

improved. These estimation and productivity questions are related in that the estimation 

models contain descriptions of what factors their developers believe affect productivity. 

How well do these models identify and reflect these factors?... [T]he models, although an 

improvement over their raw inputs for estimating project effort, do not model the factors 
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affecting productivity very well. One possible extension of this research is to… attempt to 

determine the causes for the wide swings in accuracy of the estimates across projects. What 

characteristics make a project amenable to this type of estimation? What factors could be 

added to the models to enable them to do a better job on all of the projects? On the 

productivity side… projects show a large amount of variance in terms of such traditional 

metrics as SLOC per man-month. Can these variations be traced to productivity factors 

controllable by the software manager?... Further research needs to be done to isolate and 

measure these factors affecting systems professionals' productivity if the profession is to 

meet the challenges of the future. 

4.3.2 The Impact of Architecture on Productivity 

Architectural factors strongly influence developer productivity considered in the aggregate.  In fact, Printz 

makes a compelling argument that the equations underlying the COCOMO model presume that the system 

being developed has been appropriately modularized according to Parnas‘ principles, thereby allowing 

developers to operate independently.  If a design is not sufficiently modular, Printz asserts that estimation 

models lack a solid theoretical foundation. [167] A substantial body of work in design and systems theory 

explores the means by which hierarchical decomposition and modularity eliminate feedback in the design 

process, thereby enabling this independence of action and reducing the likelihood of change propagation or 

rework. [5, 30, 31, 34, 36, 46, 55, 58, 66, 69, 70, 168-172] (This work has already been discussed and will not 

be revisited in great depth here.)  The architecture of a product being developed or maintained has a 

substantial impact on the productivity of a development organization.  Misalignment between the structure of 

a complex product and the needs of a development team can impair organizational performance.  Recent case 

studies have shown that refactoring software to reduce architectural complexity can be extremely rewarding 

because it can make developers more productive when implementing new functionality, and because it 

reduces defect-proneness, thereby allowing the developer to expend less effort correcting, testing for, 

avoiding, and preventing defects. [8, 104]  
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4.3.3 The Productivity of Individual Software Developers 

Some experimental and empirical work has explored the determinants of individual and team productivity.  

Controlled experiments have been conducted to study the time it takes developers them to complete tasks (or 

their ability to complete the task at all) under a variety of conditions.  (Unfortunately, many of these studies 

have used computer science students rather than professionals as test subjects.)  Industry studies have 

combined information from change tracking, accounting, and version control systems to determine the rate at 

which various tasks have been performed. 

Most productivity studies have looked at factors that contribute to project or team productivity. Blackburn 

reports that smaller teams, projects with shorter cycle times, and teams that spend more time on requirements 

and prototyping are more productive. [173] McCormack et al. found that developers on larger projects, 

projects with complete functional specifications, and projects that employed prototyping were more 

productive.  They also found a weak relationship between productivity and the completeness of detailed 

design specifications. [174] It is well known that defect correction is more difficult and time consuming than 

the development of new features.  Banker et al. tell us that 50% of effort expended during a maintenance task 

is consumed trying to understand the code, and that complexity is strongly related to understandability. [175] 

The effort required to correct a defect grows dramatically as time passes, partially due to a need to reconstruct 

a mental model of the code and partially due to the ―knock-on‖ effects of quality problems. [24, 59] Practices 

aimed at minimizing defect introduction and finding defects early have an extraordinary impact on individual 

and team productivity as a result. 

Some studies have looked at determinants of individual productivity. Many researchers have noted substantial 

variations in developer ability.  The productivity of individuals has been shown to vary by an order of 

magnitude. [162, 176-183] (Although not highlighted in this report, we should note that a 10x difference in 

developer productivity between the top and bottom quartile was observed in the data used for this study as 

well).  The impact of individual variation is very strong, likely exceeding the impact of most project or 

software related factors.  Due to this highly skewed individual variation, studies exploring other factors must 
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take care to appropriately control out this noise.  Other important relationships have been found.  Individuals 

with more experience and a diversity of experiences tend to be more productive.  Unsurprisingly, developers 

are also more productive when they have done prior work that that is similar to the current task. [175] 

Evidence of learning curves in software development has been found.  [184, 185]  In addition to age and 

experience, individual practices matters as well.  Littman et al. did an experiment and found a strong 

relationship between an individual‘s problem solving strategy and performance on experimental maintenance 

tasks.  They identified developers who used "systematic" and "as-needed" strategies during problem solving.  

―As the names imply, maintainers employing a systematic strategy attempted to construct a mental model of 

how the program worked, and then used that mental model in the performance of their maintenance task. 

Others only examined the program code when necessary to check specific hypotheses. The systematic 

maintainers were the only ones who successfully completed the maintenance tasks. Recently, Robson et al. 

have noted that this finding may be an artifact of the small program used in the experiment, and that on large 

programs the systematic approach may be infeasible, leaving no preferred strategy.‖ [186] This last point is 

important.  It suggests that if complexity (architectural or otherwise) is so great that the mental model 

required to use the ―systemic‖ strategy is too large to fit into an individual‘s head, the ―as needed‖ strategy is 

the only one available.  

A few studies have looked at the relationship between code complexity and productivity.  By combining data 

from software tracking systems and billing systems at a defense contractor, Gill found McCabe‘s cyclomatic 

complexity to be negatively associated with developer productivity when performing software maintenance 

[111] Chen reported that an entropy-based program-control-complexity metric correlated negatively with 

productivity under experimental conditions (but a sample size of 8 prevents us from drawing conclusions.) 

[187] In another experiment, Curtis found that program size, McCabe cyclomatic complexity, and Halstead 

metrics were negatively correlated with programmer accuracy and time to task completion.  His results held 

only when the programs were unstructured, contained no comments, and the developers being tested were 

inexperienced, however.  For experienced developers, no effect was found. [22] Akaikine and MacCormack 

recently found that after a commercial software application was completely rewritten in a different language, 
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resulting in a system with much lower architectural complexity, the company‘s maintenance organization was 

capable of patching critical defects more rapidly. [104] 

There is a large and diverse body of descriptive and theoretical work describing the virtues of hierarchy, 

modularity, and other architectural patterns in system designs.  Much of that work tells us that engineers 

should be more productive when working in well structured architectures.  Unfortunately, there is currently 

no empirical research validating this link between a system‘s architectural properties and the productivity of 

engineers doing feature development or maintenance.  This represents a serious gap in the literature on 

complex system design management.  Our second hypothesis is therefore the following: 

Hypothesis 2: When working in more architecturally complex regions of a system design, developers are less productive.  

Developers working in complex regions will produce fewer lines of code overall, fewer lines of code when 

implementing features, and fewer lines of code when correcting defects, than they would when working in 

less architecturally complex regions of the system. 

4.4 Complexity and Human Capital 

In our third analysis we explore the link between architectural complexity and human capital issues.  More 

specifically, we explore the link between the architectural complexity of the code a developer works in and 

the probability that that developer leaves the firm.  Turnover is costly in its own right.  In addition, measures 

of staff turnover can also be viewed as a proxy for other costs related to the performance issues, morale 

issues, or burnout that might precede a voluntary or involuntary termination.  While some amount of 

turnover in any organization is healthy, a causal link between code-complexity and turnover could hardly be 

seen as positive.  In this section we will review pertinent literature on potential human costs of complexity 

such as morale and staff turnover among technologists and state our third hypothesis.  

Most research on motivation and turnover among technical professionals is aimed at technology managers, 

seeking to improve managerial practice.  (An excellent reference is The Human Side of Managing 
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Technological Innovation by Katz [188])  

Software development staff turnover is very costly for a development organization.  Westlund says, 

―Retaining information technology employees has been a problem in many organizations for decades. When 

key software developers quit, they depart with critical knowledge of business processes and systems that are 

essential for maintaining a competitive advantage.‖  Kemerer relays a similar insight provided by Dean and 

McCune: ―a survey of Air Force maintainers reported that the top three problems in software maintenance 

were all comprehension related: (1) a high rate of personnel turnover requiring that unfamiliar maintainers 

work on the systems, (2) difficulty in understanding the software, particularly in the absence of good 

documentation, and (3) difficulty in determining all of the relevant places to make changes due to an 

inadequate understanding of how the program works.‖ [120] 

Because turnover is costly, it is important to understand the factors that lead to it.  In a survey of software 

developers, Westlund looked at the relationship between ―turnover intentions‖ (an employee‘s willingness to 

leave) and nine factors including satisfaction with pay, opportunity for promotion, quality of supervision, 

benefits, contingent rewards, working conditions, happiness with coworkers, satisfaction with the nature of 

the work, and satisfaction with communication.  Multiple linear regression models were used to isolate the 

impact of each determinant.  While all of these predictors correlated with turnover intentions, some effects 

were stronger than others.  The strongest predictors of turnover were satisfaction with contingent rewards 

(the acknowledgement of a job well done), communication, and supervision.  The weakest were satisfaction 

with benefits and working conditions. [189] 

Motivation (and demotivation) are strongly linked to turnover.  It is therefore important to understand the 

factors that motivate technologists.  In 2007, Beecham, Baddoo, and Hall surveyed the literature on 

motivation among software engineers. [190] Their summary of the topic included a number of interesting 

insights.  Characteristics of the personality makeup of software engineers include ―the need for growth and 

independence… The need for growth may be due to the engineer‘s internal make up, and… the need to keep 

up with the fast changing technology. The need for independence is possibly linked to the type of person 
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attracted to software engineering that is sometimes seen as a creative task that is not helped by overbearing 

management.‖ [190] The ―most frequently cited motivators in the literature are, ‗the need to identify with the 

task‘ such as having clear goals, a personal interest, understanding the purpose of a task, how it fits in with the 

whole, having job satisfaction; and working on an identifiable piece of quality work.‖ [190-192]  In addition, 

―An experienced Software Engineer is more likely to be motivated by challenges, opportunities for 

recognition and autonomy.‖  ―Poor working conditions‖ and ―lack of resources‖ are the most commonly 

discussed demotivators.  The effect of work type – new feature development vs. maintenance tasks – on 

happiness was somewhat ambiguous.  Maintenance activity was cited as demotivational in some studies, while 

other studies showed that some engineers were happy working to maintain legacy code (provided that that 

maintenance involved the evolution of functionality rather than strictly being corrective in nature). [190] 

It is widely understood that people do not leave firms; they leave their bosses.  Supervisors who inhibit the 

productivity of creative professionals or who behave erratically can create toxic work environments.  It stands 

to reason that technical systems that inhibit productivity or that behave erratically may have a similar 

demotivational effect.  After all, software engineers spend more time with the code than with their 

supervisors.  If architectural complexity causes more defects (as stated in Hypothesis 1) and impairs 

productivity (as stated in Hypothesis 2) then it may very well impair morale and lead to voluntary turnover.  

Additionally, because architectural complexity is neither directly observable nor well understood, a manager 

may fail to appreciate its influence.  As a result, lower productivity or higher defect introduction rates may 

lead a manager to inaccurately conclude that a subordinate is a poor performer, leading to an increased 

probability of involuntary turnover.  Unfortunately, there is no body of literature exploring the link between 

architecture or complexity on morale and turnover.  This leads us to our third hypothesis: 

Hypothesis 3: Developers working in more architecturally complex regions of a codebase are more likely to leave their job 

voluntarily or involuntarily.  Assuming Hypotheses 1 and 2 hold, these developers will be frustrated by the 

increased propensity towards defects, be frustrated by the lower productivity they experience, or be evaluated 

negatively by managers or peers as a result. 
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5  Research Methods 

A variety of research methods were chosen to explore the links between costs and complexity.  In this section 

we describe the means used to represent architecture, the means of defining and measuring complexity, and 

the means by which architecture and complexity metrics were extracted from a large software system.  We 

then demonstrate how the complexity metrics used in this study relate to hierarchy and modularity.  We go on 

to describe the workflow and tools used by software developers, the historical data that is often produced as a 

side-effect of their work, and the means by which we can exploit historical databases to measure defect 

density, productivity, and staff turnover within an organization. 

5.1 Measuring Architectural Complexity in Software 

Well-known patterns are employed by man and nature to control complexity as systems scale.  These include 

hierarchy and modularity.  Technical architectures in which these patterns are judiciously applied tend to be 

of higher quality, be safer, and to benefit from other ―ilities‖ over the course of their lifecycles.  ―Judicious‖ 

does not always imply more, however, and more is not always better.  There are certainly well designed systems 

that are integral where these patterns may be less pronounced. Integral systems are more architecturally 

complex than comparably sized systems with hierarchical structure or modular boundaries, and that 

architectural complexity may also make them more costly. Within the same system, different regions will be 

more interconnected or less so, and will therefore have varying levels of intra-system architectural complexity.  

Components in a position to affect many other components, or that can be affected by many other 

components, have high levels of architectural complexity relative to their less well-connected peers.  Affecting 

or being affected by other components need not be direct – it may be done through an intermediate 

connection.  Architectural patterns are global features of a design.  To capture the impact that these 

architectural patterns have on a single component we must therefore use metrics that take both direct and 

indirect relationships into account. 
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Networks are established tools for representing and analyzing system architectures because they are a natural 

means of capturing hierarchical relationships, modularity, coupling, cohesion, and cyclicality, and other 

architecturally important patterns.  When networks are used for this purpose, network nodes designate parts, 

components, or system elements.  Arcs or lines between nodes designate functional or structural relationships 

between those parts.  If these arcs are directed they can represent one-way dependencies between parts. 

Directed networks are appropriate abstractions for use in this study because they can be used to represent 

relationships between software constructs that are often unidirectional.  In this research, we extract networks 

from a software product‘s source code.  We then compute network metrics as a means of assigning 

architectural complexity scores to each file within that codebase. 

5.1.1 Networks and DSM Architecture Representations 

A network is a means of representing entities and the paths or relationships between them.  In network 

terminology, an entity is a ―node‖ while a path or relationship is an ―edge‖ or ―arc.‖  The following figures 

show the same simple network in two different ways.  Figure 12 is a traditional network view.  Nodes A, B, 

and C, are connected by the arc   ⃑⃑⃑⃑  ⃑ and the bi-directional arc   ̅̅ ̅̅ .  In Figure 13, this same network is 

represented as a square matrix.  Nodes have the same ordering down columns and across rows.  Dots in the 

matrix serve the same purpose as arrows in the traditional view.  A directed arc is read by looking first at a 

row (the ―from‖ dimension‖), finding a blue dot indicating an arc, and then scanning up the column to see 

which node the arc goes ―to.‖  In the traditional representation, each node is a single point.  In the DSM 

representation, each arc is a single point.  While encoding identical information, each view can highlight 

different network features. 
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Figure 12: Simple Network 

 

Figure 13: Simple DSM 

 

It is important to note that this report uses network conventions that are slightly different 

than those used in much of the DSM literature due to differences between software and 

hardware.  See Figure 3 for a detailed explanation. 

 

Two real-world networks can illustrate the value of both traditional and DSM network notations.  The 

Moscow Subway map shown in Figure 14 (a traditional view) can be used in navigation.9  A matrix 

representation would not allow a person to reach a destination.  On the other hand, the matrix representation 

of the Mozilla software system (shown in Figure 15) can be used to highlight the modularity and coupling 

patterns in the system.  [9] A traditional view would not make these properties visible. 

 

                                                      

9 Thanks to Dan Whitney for providing this example. 
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Figure 14: Moscow Subway Map 

 

Figure 15: Mozilla DSM 
 

5.1.2 Procedure for Assigning Architectural Complexity Scores to Source Code Files 

In this research, we operationalize the concept of architectural complexity by using network metrics devised 

by MacCormack, Baldwin, and Rusnak [8, 9] that capture the level of coupling between each software file and 

the rest of the system, and therefore represent relative absence of modular isolation or hierarchical structure 

in a design.   

The MacCormack approach can be described in the following 5 steps: 

 Capture a network representation of a software product‘s source-code using dependency extraction 

tools 

 Find all the indirect paths between files in the network by computing the graph‘s transitive closure 

 Assign two visibility scores to each file that represent its reachability from other files or ability to 

reach other files in the network 

 Use these two visibility scores to classify each file as one of four types: peripheral, utility, control, or 

core. 



71 

This procedure and its rationale will be described in detail in the next sections. 

5.1.2.1 Extracting DSMs From a Software Codebase 

Software developers can create and modify systems consisting of thousands of source code files and many 

millions of lines of code.  Each source code file contains text written in a specific programming language. 

These files typically specify functions a computer should perform and data structures for those functions to 

operate on.  Functions tell a computer‘s processor what instructions to perform while the data structures 

define information that will be stored in a computer‘s memory.  Similar functionality is often grouped inside 

the same source code file, but some files will depend on functionality or data described in other files.  When 

software development is complete, all of the files must be compiled and linked together.10  Each file is 

translated into a machine-readable form, and cross-references between files are resolved.  Once this linking 

step is complete, a program can be loaded and run. 

In this research, we construct networks that represent software source-code files as nodes.  When a 

relationship (such as the invocation of functionality or data access) spans two files, it is represented as an arc 

between two nodes.  Figure 16 is a very simple illustration containing a program with two files, each 

containing two procedures.  The first file defines procedures for calculating properties of a rectangle.  The 

second defines generic mathematical procedures that multiply and add numbers.  Calls from the ―rectangle‖ 

functions to the ―math‖ functions span these two files.  This example would result in a network with two 

nodes, and a single arc from ―rectangle_functions‖ to ―math_functions‖. 

                                                      

10 The same logic occurs with interpreted languages, but the translation and linking happen at run-time.  In compiled 
languages, some linking may be performed dynamically at runtime as well. 
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// ===================================== 
// file name: rectangle_functions 
// ===================================== 
procedure area = rectangle_area(length, height) 
 area = multiply(length, height) 
end 
 
procedure perimeter = rectangle_perimeter(length, height) 
 perimeter = add(multiply(length, 2), multiply(height, 2)) 
end 
 

 
// ===================================== 
// file name: math_functions 
// ===================================== 
procedure sum = add(num1, num2) 
 sum = num1 + num2 
end 
 
procedure multiple = multiply(num1, num2) 
 multiple = num1 * num2 
end 
 

 
Figure 16: Simple Pseudocode 

 
 
Real software products are obviously much larger than this (admittedly absurd) example.  For example, the 

DSMs shown in Figure 17 and Figure 18 represent two entirely different software systems of roughly 

comparable size.  In both DSMs, an algorithm has reordered the files so as to move as much ―mass‖ below 

the diagonal as possible.  The software system shown in Figure 17 has a structure that is extremely 

hierarchical (As demonstrated by the fact that the algorithm moved almost all mass below the diagonal.)  The 

software system in Figure 18, on the other hand, has a ―core-periphery‖ structure.  When a system has a core-

periphery structure, the lower-diagonalization process naturally segments a DSM into four distinct regions.  

Figure 18 includes files that are utilities (relied upon by many others), a core with indirect and cyclical 

connectivity, files that are on the periphery of the network, and controller files that call out to many other 

files.  MacCormack has found that approximately 80% of software systems have this ―core-periphery‖ 

structure, while approximately 20% are more purely hierarchical. [79] 
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Figure 17: Hierarchical Software System 

 

Figure 18: “Core-Periphery” Software System 

 

In this study we extracted DSMs from portions of codebases composed of C and C++ language files.  The 

Understand static analysis tool commercially available from Scientific Toolworks, Inc. was used to parse code and 

extract dependency information.  We chose to add directed links in DSMs when the following types of file-

spanning relationships were encountered:  

 The site of function calls to the site of the function‘s definition 

 The site of class method calls to the site of that class method‘s definition 

 The site of a class method definition to the site of the class definition 

 The site of a subclass definition to the site of its parent class‘ definition 

 The site at which a variable with a complex user-defined type is instantiated or accessed to the site 

where that type is defined.  (User-defined types include structure, union, enum, and class.) 

The directionality of these arrows was chosen based on the likely direction of change propagation.  (Change 

actually propagates in the opposite direction of the arrows given the way we have chosen to draw them.)  In 
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files
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all cases, a change in the entity being ―pointed to‖ had a reasonable chance of requiring a change in the entity 

from which the arrow originates.  The ―to‖ node is a file which defines an interface, provides functionality, or 

defines the structure of data that the ―from‖ node relies upon. 
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5.1.2.2 Finding the Indirect Dependencies in a Graph 

Once a network of the software architecture is captured, a transitive closure [193, 194] algorithm is run to 

identify all direct and indirect links.  The figures below illustrate how this is done. Figure 19 and Figure 21 are 

network and DSM representations of the same graph. Figure 20 and Figure 22 are the transitive closures 

diagrams of that same graph.  Note that node ―D‖ depends on ―C‖ directly, and ―A‖ and ―B‖ indirectly.  The 

transitive closure graph shows potential dependencies in the system.  The indirect link from D to A is 

important because an unwise design change made to A could break D through the intermediary C. 

Unintended side-effects of design choices may be conveyed through intermediaries because indirect links are 

harder for the designer to track. 

 

Figure 19: Simple Network (Direct) 

 

Figure 20: Simple Network (Transitive 
Closure) 

 

Figure 21: Simple DSM (Direct) 

 

Figure 22: Simple DSM (Transitive Closure) 
 

5.1.2.3 Computing visibility metrics for each file 

Once the transitive closure graph is computed, visibility scores are computed for each node. 

D

C

B

A

DCBA

D

C

B

A

DCBA



76 

The following metrics are taken for each node in the direct dependency DSM: 

 Fan In (FI):  How many other nodes depend upon it directly? Computed by counting the number of arrows 

pointing into that node or counting entries (including the diagonal square) down the node‘s column 

in the DSM.   

 Fan Out (FO): How many other nodes does it depend upon directly?  Computed by counting the number of 

arrows pointing out from that node or counting entries (including the diagonal square) across the 

node‘s row in the DSM.   

The following metrics are taken for each component from the transitive closure DSM and its nodes: 

 Visibility Fan In (VFI): How many other nodes depend upon it directly or indirectly?  Computed by counting 

the number of arrows pointing into that node in the transitive closure graph or counting entries 

(including the diagonal square) down the node‘s column in the DSM.   

 Visibility Fan Out (VFO): How many other nodes does it depend upon directly or indirectly?  Computed by 

counting the number of arrows pointing out from that node in the transitive closure graph or 

counting entries (including the diagonal square) across the node‘s row in the DSM.   

The following metrics are taken for the system as a whole: 

 Network Density:  A system-wide metric determined by dividing the number of direct links in the 

graph by the total number of possible links.  Computed by counting the number of dots and diagonal 

elements and dividing by the total number of squares. 

 Propagation Cost:  A system-wide metric determined by dividing the number of direct and indirect 

links in the graph by the total number of possible links.  Computed by counting the number of dots 

and diagonal elements and dividing by the total number of squares. 



77 

To illustrate, Figure 23 and Figure 25 represent the same network with 12 nodes and 47 arcs (including self 

referencing arcs), while Figure 27 is its transitive closure.  In these examples, node ―H‖ has FI = 3, FO = 4, 

VFI = 6, and VFO = 6.   For the system as a whole, Network density = 47/144 and Propagation cost = 

81/144. 
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Figure 23: Hierarchy of Modules 

 
Figure 24: Hierarchy of Modules with Unwanted 

Links 

 
Figure 25: DSM of Hierarchy of Modules 

 
Figure 26: DSM of Hierarchy of Modules with 

Unwanted Links 

 
Figure 27: Transitive Closure DSM of 

Hierarchy of Modules 

 
Figure 28: Transitive Closure DSM of Hierarchy 

of Modules with Unwanted Links 
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5.1.3 Component Architectural Categories: Peripheral, Utility, Control, Core 

Once computed, VFI and VFO scores for components across a system can be rank-ordered and plotted to 

see their distributions.  Figure 29 shows the distribution of visibility scores for one of Iron Bridge‘s releases.  

When systems have a core-periphery structure, these distributions tend to contain ―cliffs‖ demarcating the 

boundary between peripheral files and those that are highly connected when indirect links are considered. [79] 

In the MacCormack approach, these cliffs are used to partition VFI and VFO scores into ―low‖ or ―high‖ 

bins. 

 
 

Figure 29: Distribution of Visibility Scores and Cutoff Points for a "Core Periphery" Network 
 

Once visibility scores have been computed, and once those scores are classified as either ―high‖ or ―low‖, 

each component can be classified as peripheral, utility, control, or core according to the scheme laid out in Table 1. 
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If VFI is and VFO is  then it is Description 

low low peripheral Peripheral components do not influence and are 
not influenced by much of the rest of the system. 

high low utility Utility components are relied upon (directly or 
indirectly) by a large portion of the system but do 
not depend upon many other components 
themselves.  They have the potential to be self-
contained and stable. 

low high control Control components invoke the functionality or 
accesses the data of many other nodes.  It may 
coordinate their collective behavior so as to bring 
about the system level function. 

high high core Core regions of the form highly integral clusters, 
often containing large cycles in which components 
are directly or indirectly co-dependent. They regions 
are hard to decompose into smaller parts and may 
be unmanageable if they become too large. 

Table 1: Mapping of Visibility Scores to Architectural Complexity Classification 
 

In this research, we use each file‘s classification as peripheral, utility, control, or core as an indicator of the 

file‘s architectural complexity.  Core files are the most architecturally complex because their high levels of 

connectedness indicate that they are in regions of the network that are coupled by large architecture spanning 

cycles. 

5.1.4 The Relationship Between Hierarchy, Modularity, and MacCormack’s Metrics 

5.1.4.1 How Visibility Metrics Capture Architectural Complexity 

Figure 23, Figure 25, and Figure 27 show a network previously discussed in the literature section showing 

system structured as a hierarchy composed of modules.  In some ways this DSM incorporates principles of 

design put forth by David Parnas, Herbert Simon, and others. [48, 51, 69] In order to understand how these 
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architectural patterns manage complexity and how MacCormack‘s visibility metrics capture this fact, we will 

explore a degenerate case represented by Figure 24, Figure 26, and Figure 28.  

Imagine that during maintenance, engineers inadvertently added two additional links (  ⃑⃑⃑⃑⃑⃑  and   ⃑⃑⃑⃑⃑⃑ ) in 

violation of design rules.  The network density rises slightly from (47/144) or 33% to (49/144) or 34%.    ⃑⃑⃑⃑⃑⃑  

causes multiple issues.  First, D is interacting with a node that was not previously considered ―public‖ by its 

module.  Secondly,   ⃑⃑⃑⃑⃑⃑  couples two modules that previously had no interaction. These modules can no 

longer co-evolve independently. Teams developing the separate modules may not be aware of this fact.  It is 

possible that H‘s owner is unaware that D is now dependent upon it.    ⃑⃑⃑⃑⃑⃑  is more problematic.  It introduces 

a long cycle spanning several independent components.  Not only does B directly depend upon K, K also 

indirectly depends upon B.  Any functionality that indirectly depends on B (potentially all of it) now has a 

chance of getting into a recursive loop of dependence.  Modular isolation of the system has broken down.  

Hierarchy has been eliminated because arrows no longer flow in one direction. Homeostasis has been 

eliminated.  This fact is captured in transitive closure DSM shown in Figure 28. In the degenerate system, 

VFI and VFO for all nodes are now at a maximum.  Propagation cost of this system has risen from (81/144) 

or 56% to (144/144), 100%. 

5.1.4.2 How Hierarchy and Modularity Control Architectural Complexity 

Hierarchy and modularity are tools that can control complexity and enable certain ilities.  When these patterns 

are employed judiciously, a system can scale, side effects can be avoided, independent parts can co-evolve, 

and the development process can be managed by fallible and boundedly-rational human actors. Networks 

connected in these ways are far from random – rather, they are highly indicative of intentional or evolved 

order in a system.  

To demonstrate this point, 10,000 random DSMs with 12 nodes and 47 arcs (12 on the diagonal) were 

generated.  These DSMs had the same number of nodes and arcs as the network in Figure 23 (Parnas and 

Simon‘s hierarchy of modules from above.)  After generation, the transitive closure of each random graph was 
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computed.  The propagation cost for the random networks was compared against the propagation cost for 

network in Figure 23.  Table 2 contains the results. 

 Network density Propagation cost 

Hierarchy of Modules 32.64% 56.25% 

Hierarchy of Modules (broken) 34.03% 100.00% 

Random network MIN 32.64% 51.39% 

Random network MAX 32.64% 100.00% 

Random network Mean 32.64% 93.84% 

Random network Median 32.64% 92.36% 

Random network Mode 32.64% 100.00% 

Table 2: Propagation Cost of Structured and Random Networks 
 
 
Note that the average propagation cost for random networks was above 90 percent, while the propagation 

cost for the hierarchy of modules was very close to the minimum of the 10,000 randomly generated networks.  By 

lower-diagonalizing and visually inspecting 50 randomly generated networks with low propagation cost (those 

with scores below 60%) we found that lowest scoring architectures were almost fully hierarchical while those 

with only one or two small cores had these low scores as well.  Hierarchy and modularity seem to control 

structural complexity, and this fact is captured by MacCormack‘s visibility metrics.   

It should be noted that MacCormack‘s classification scheme defines categories that only imperfectly capture 

some aspects of hierarchy and modularity.  By definition, hierarchies are directed acyclic graphs.  By identifying 

the largest system-spanning cycle and defining nodes captured that cycle it as ―core,‖ we identify a set of files 

that are clearly in a-hierarchical regions of the system.  Some non-core files are also positioned within 

network-cycles, but those cycles tend to be localized rather than system spanning.  Localized cycles can 

constitute modules that, so long as they are reasonably sized, manage complexity by isolating integrated 

functionality.  MacCormack‘s classification scheme also captures some notions of modularity by 

differentiating between files that are tightly coupled and loosely coupled.  Loosely coupled elements are easier 

to evolve and have greater ―option-value.‖  By employing a single metrics that imperfectly captures some 

aspects of both hierarchy and modularity, we can operationalize the concept of architectural complexity in a 

simple (if somewhat crude) manner.  If the simple architectural complexity metrics employed in this study 

found to be important, subsequent work should explore the link between quality, productivity, and other 
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more specialized architectural measures.  Examples of other architecture measures worth exploring in future 

work include hierarchy measures devised by Luo and Magee [195] and measures of network centrality.  For an 

in depth review of hierarchy theory and metrics, see Luo‘s doctoral dissertation. [196] For a good discussion 

of modularity metrics, see Hölttä-Otto and de Weck. [197] 

5.2  Measuring Costs of Software Development and Maintenance 

An underlying premise of this work is that architectural complexity can cause significant costs that are 

traceable to specific software source-code files.  In this study, file-level categories (peripheral, utility, control, 

and core) will be used as independent variables in regression analysis aimed at determining the cost of 

architectural complexity.   

We will explore the relationship between complexity and various forms of cost that are incurred by the 

organization during development and maintenance.  The following measures of cost are used as dependent 

variables in regression analysis: 

 Defect correction activity required in files 

 Productivity among developers working in different types of files 

 Staff turnover among developers working in different types of files 

We also use a variety of other file-, developer-, and activity-metrics as control variables in regression analysis. 

In order to understand how these costs can be traced to specific software source-code files, we must 

understand some things about the workflow of a typical software developer and the tools and databases used 

in the development process. 

5.2.1.1 The Typical Developer Workflow 

In the typical workflow (for a project of reasonable size) a software engineer will interact with both a 

―Change Request‖ system and a ―Version Control System.‖  A change request system stores feature requests and 
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bug reports.  It is used by developers to manage tasks and to track work progress.  A version control system stores 

all versions of the source code and information about the changes that go into it over time.  It allows 

developers to look at the history and evolution of every file it manages and determine who contributed each 

line of code.  

 

Figure 30: Primary Developer Workflow 
 

To illustrate: Imagine that a developer named ―Jill‖ has undertaken the task of making a change to the 

software.  Jill chooses a task to work on from a list of tasks in the change request system.  (If the task she 

wishes to work on is not in the system, she creates a new entry.)  She engages in planning activities 

appropriate to the task such as requirements gathering, functional design, architectural design, and 

communication with other people and teams.  When Jill is ready to begin coding, she creates a copy of the 
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most recent version of the code from the version control system‘s central repository.  She makes a local copy 

– known as a ―sandbox‖ that she is free to modify, recompile, and test without interfering with the work of 

others.  Jill implements the required changes by modifying existing source code files or creating new ones.   

When Jill believes the task is complete, she submits her new and modified files to the version control system 

for inclusion in a new ―most recent‖ version of the code.  The version control system compares Jill‘s locally 

modified files against the current version and and does two things: 

 Creates changes which store information about specific lines that must be added-to and removed-from 

each modified file to incrementally update it from one version to the next. 

 Inserts those changes into the version control system repository so that the next person to create a 

sandbox will obtain Jill‘s new version of the code. 

Once this process is complete, Jill will modify the change request to indicate that the work has been 

completed and will begin the process anew on her next task. 

5.2.1.2 Historical Data Available in Change Tracking and Version Control Systems 

 
Each request stored in the typical change tracking system contains many fields, some of which can be 

extracted to enable this research: 

 A unique identifier 

 A means of knowing whether a request is to implement a feature, fix a bug, or perform some other 

task (such as refactoring) 

 Dates on which a change request was created and the change was completed 

 The name of the individual who performed the task 

Logs in the version control system will generally store the following useful information about every change 

made to a file: 
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 A unique identifier 

 The name of the file being changed 

 The number of lines of code being added and deleted  (Note that changing a single line will appear as 

one line added and one line deleted.) 

 The date of the change 

 The name of the individual that submitted the code 

5.2.1.3 Required Linkage Between Changes and Change Requests 

The following diagram shows those data fields that are generally stored in change request systems and version 

control systems that can be used for our research purposes: 

 

Figure 31: Change Tracking, Version Control, and Integration Between the Two 
 
 
One additional step is required of ―Jill‖ to enable this analysis.  It must be possible to link specific changes to 

specific change requests so that we can determine which changes were intended to fix bugs, and which were 

intended to implement features.  Although every other piece of data described above is available for most 

software development projects, this linkage between version control history and change request history is not 

always present.  To enable our historical analysis, Jill must have included unique identifiers associated with the 

change requests she works on in the version control logs for the changes she submitted so that the two could 

be associated. 
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5.2.2 Means of Capturing Complexity and Cost Data 

Table 3 shows the type of file-level information that was assembled for use in analysis.  Table 4 shows the 

type of developer-level information that was used in analysis.  This data was obtained by mining corporate 

version control systems, change tracking systems, human-resources databases, and source code. 
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Per File Development Activity Metrics  
(captured for a range of dates) 

File Based Metrics  
(captured from a snapshot of the source code) 

Number of changes that went into a file 
Number of changes to fix bugs in file 
Number of non-bug changes in file 
Lines of code (LOC) added and removed 
LOC added and removed to fix bugs 
Non-bug LOC added and removed 

Architectural complexity metrics 
McCabe cyclomatic complexity 
File size (lines of code) 
File age (in years) 
File language (C++, Java, etc.) 
File purpose (product vs. test) 

Table 3: File-Based Metrics Captured 
 

Per Developer Activity Metrics  
(captured for a range of dates) 

Developer Metrics 
(captured on a specific date) 

Number of changes made to files 
Number of file changes to fix bugs 
Number of non-bug file changes 
Lines of code (LOC) added and removed 
LOC added and removed to fix bugs 
Non-bug LOC added and removed 

Time with company (in years) 
Is manager? 
Department 
Role (Developer, Quality Engineer, Consultant) 
Hire date 
Termination date 

Table 4: Developer-Based Metrics Captured 
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Over the course of this research, software was developed to extract this information from multiple sources 

within a firm, insert it into a relational database, query the database to create tables for use in statistical 

analysis, and to perform statistical tests.  Figure 32 shows a simplified diagram of the infrastructure that was 

developed during the course of this research: 

 

Figure 32: Infrastructure for Extracting, Relating, and Analyzing Data 
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6 Research Setting 

This study set out to quantitatively measure the link between architectural complexity (the complexity that 

arises within a system due to a lack or breakdown of hierarchy or modularity) and a variety of costs incurred 

by a development organization.  A study was conducted at a successful commercial software development 

firm within a large codebase.  Measures of architectural complexity were taken from their software over 8 

successive versions to enable longitudinal analysis.  Multiple significant cost drivers including defect density, 

developer productivity, and development staff turnover were measured as well by extracting information 

from software version control, change tracking, and human resource databases.  The link between cost and 

complexity was explored using a variety of statistical techniques.  This section describes the organization 

being studied, the portions of their codebase that were chosen for study, and the methods used to extract and 

clean the data.  It concludes by providing some descriptive statistics on the complexity of the code being 

studied. 

6.1 Organization Under Study: Large Scale Commercial Software Firm 

The software under examination in this study is a portion of a very large code-base owned by a successful 

commercial firm.  Over time, thousands of professionals wrote software consisting of hundreds of thousands 

of files and tens of millions of lines of code in many different languages.  Hereafter, we will refer to the firm 

by the pseudonym ―Iron Bridge Software.‖  This body of code forms a product platform – some products are 

required for others to run.  Iron Bridge organizes development activity around a fixed release schedule.  

Within this cadence, teams have coordinated periods for planning, feature development, and quality control.  

Each development cycle concludes with the commercial release of a new version of the software to 

customers.   

Information was extracted from software source code for eight successive released versions and information 

about periods of development activity leading up to each release.  Architecture metrics were extracted from 

source code for each version.  Information about development costs the organization incurred were extracted 



92 

from version control systems, change tracking systems, and human resource databases.  The cost of 

complexity was explored by relating differences in complexity to differences in development costs across the 

codebase.  

6.2 The Software Development Process at Iron Bridge 

Iron Bridge‘s products are developed by hundreds of software professionals all working to improve the same 

codebase.  Product development teams within Iron Bridge exercise a lot of independence when working in 

their regions of the source-code, and coordinate when they meet at system interfaces.  These teams leverage 

centrally managed tools and processes however.  The code-base is stored in a common version control 

system, compiled using a common build system, and tested using a common regression-testing framework. 

Teams use a shared change tracking system, version control system, code validation tools, and common 

project management processes. 

Figure 33 depicts the timeline of development activities for one release.  At the outset of a release there is a 

period of time for managerial goal setting and development planning.  This is followed by a period of active 

development.  Two important dates toward the end of this period include a deadline for completing product 

enhancements and a deadline by which all code changes are supposed to be completed.  Following code-

freeze, developers move on to planning for the next release.  Some bugs may continue to be found and fixed, 

but these late fixes have the potential for negative side effects, and thus receive heightened scrutiny. 

 

Figure 33: Fixed Development Window 
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Figure 34 shows a simplified picture of the workflow for a developer at Iron Bridge.  In the lower left we find 

a customer receiving a new version of the software.  This customer has unmet needs, encounters limitations, 

or discovers defects in the product.  Through various planning processes, marketing activities, and technical 

support channels, customer needs are translated into prioritized feature requests and bug reports stored and 

tracked in the change tracking system.  Requests are also entered by employees who need to track their own 

work, encounter bugs, or need functionality developed by other teams. They enter information about features 

they wish to develop, bugs they need to fix, and refactoring that should be done. 

 

Figure 34: Primary Developer Workflow and Release Cycle 
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number of states indicating development progress beginning with ―New‖ and ending as either ―Completed‖ 

or ―Discarded.‖ 

Iron Bridge was chosen for investigation because it has conducted a good natural experiment.  Because teams 

at Iron Bridge have independent control over software but centralized calendars and tools, the company has 

done a number of things that enable this research.  First, the effect of process, tools, and schedule are 

controlled for.  The impact of architecture on costs incurred by the organization when developing it can be 

isolated in a reasonable manner.  Secondly, because developers within Iron Bridge use common tools, 

databases, processes and terminology, common measures related to productivity and quality could be 

established across teams.  Thirdly, Iron Bridge‘s history of data-collection and for long periods without 

changes in its tooling allowed for longitudinal analysis.  Fourthly, because Iron Bridge is a commercial firm 

we have the opportunity to study not only the software, but also the developers.  Many research studies in 

this field look at open-source systems.  Such studies can look at issues related to quality but cannot look at 

productivity because they cannot make a ―40 hour assumption.‖  Here we can measure the productive output 

of a large number of individuals and assume that they have worked a reasonably similar amount of time.  No 

such assumption can be made when looking at open-source projects.  In addition, access to human-resource 

databases allows us to control for time with the company and managerial status.  Finally, and perhaps most 

crucially, Iron Bridge maintains integrated change tracking and version control systems. Policy dictates that 

developers include the identification number of specific features or bugs being tracked through the 

development pipeline when submitting changes into the version control system.  Tooling is designed to 

support this workflow and various checks are put in place to enforce the policy.  As a result, the link between 

feature requests, bug reports, and the code that is submitted to implement them is largely intact a substantial. 
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6.3 Data Selected for Use in Studies 

In order to study the impact of architectural complexity on various costs, we collected samples of source-

code files, samples of software developers who worked in those files, and a sample of changes that those 

developers submitted to files over time. 

6.3.1 Software Source Code Files and Developers Chosen for Study 

Iron Bridge‘s codebase consists of code written in multiple languages including C++ and Java.  The C++ 

portion of this codebase was chosen for our study.  The C++ portion of the codebase was chosen for several 

reasons.  First, the C++ codebase was large enough that the number of source files, amount of development 

activity, and number of developers led us to believe that statistically significant results could be obtained for 

this study.  Secondly, the C++ portion of the codebase contains a substantial portion of the historical 

development activity.  Third, because C++ is a compiled language (rather than an interpreted language in 

which symbols are resolved at runtime) static analysis tools used to extract the dependency structure of the 

codebase could do a reasonably good job of accurately representing the architecture of the system.  Fourthly, 

C++ code is the heart of the overall system.  It implements the most important functionality and algorithms. 

In the defect density analysis between 9937 and 13941 C++ files were examined for each of the 8 releases 

studied.  The overall sample consists of 94364 C++ file-releases, including multiple observations of many of 

the same files.  The average file in the sample is 4.2 years old and contains approximately 550 lines of code.  

During the development periods under study, the number of files in the sample grew by approximately 40% 

and the number of lines of code grew from 5.5 to 7 million lines.  Figure 35 and Figure 36 show DSMs for 

releases 1 and 8.  During this time new utility bands appeared and new modules were added, but the overall 

structure remained remarkably stable despite its growth. 
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Figure 35: DSM for Release 1 

 

Figure 36: DSM for Release 8 

 

The developer productivity analysis included 178 individuals in its sample.  A panel-data approach was 

employed in that analysis.  Developer data was taken on a per-release basis for each of the 8 releases.  In total, 

478 developer-release observations were included in that analysis.  In the analysis of staff turnover, we 

included 108 individuals in the sample.  The turnover analysis did not use a panel approach.  In that analysis, 

information from multiple developer-releases was pooled to give aggregate information for each developer. 

6.3.2 Procedures Used To Clean Data Samples 

Multiple heuristics were devised to determine if specific files, changes, or developers should be removed from 

consideration in regression models.  These heuristics were devised by examining hundreds of outlier files and 

changes, and by speaking with developers about potential sources of data or validity problems.  Procedures 

were written to modify the database accordingly.   

6.3.2.1 Rules Used to Include or Exclude Files From Consideration in Defect Analysis 

Files were removed from consideration for a variety of reasons.  In order to be included in the sample: 

 Files had to be part of a product sold to customers.  Steps were taken to remove files that 

implemented unit tests, system tests, or non-shipping infrastructure or tools code. 
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 Files had to be manually written by human developers.  Steps were taken to remove code that 

appeared to be automatically generated rather than written.  (Files were removed from the sample if 

they were abnormally large or if the submission patterns indicated that they were being completely 

replaced by each submission rather than being incrementally updated.) 

 Header files were removed because their contents typically consist of interface descriptions rather 

than implementation details, and because they are generally much smaller than the files containing 

executed code.  (Header files were present in the DSM during the transitive closure operation and 

were removed from the sample afterward.  This allowed transitive dependency paths to be revealed.) 

6.3.2.2 Rules used to Include or Exclude Changes From Consideration in All Studies 

Information about changes submitted into the version control system was used to determine the amount of 

development that went into one file or that was performed by one individual.  Procedures were devised to 

remove questionable changes from this sample. This following set of rules was used to determine which 

changes to source code files would be excluded from consideration: 

 If a single change during a development window added as many lines of code as existed in the file at 

the time of the release, the change was removed from consideration.  When examining these very 

large submissions, it became clear that the vast majority were caused either by automated changes in 

file indentation or by the submission of generated (rather than manually written) code. 

 If the number of changes submitted by a single individual on one day was above the 99th percentile 

(135), all submissions by that individual on that day were omitted.  While examining these cases it 

became clear that these ―activity spikes‖ were caused by individuals making automated changes to a 

large number of files.  Examples include submissions in which copyright notices were updated in 

every source file or small formatting changes were applied across the code. 

 If the number of lines of code (LOC) submitted by a single individual on one day was above the 99th 

percentile (7800), all submissions by that individual on that day were removed from consideration.  
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When examining these cases, it became clear that these cases involved the renaming of large files or 

the movement of large pieces of functionality from one file to another. 

 If the number of lines of code added and deleted relative to the size of the file is above the 99th 

percentile (lines added and lines deleted both more than 4 times the number of lines in the file), all 

changes to that file during the release were removed from consideration.  In addition, the file itself 

was removed from the sample.  Files with extremely high levels of code churn often contained 

automatically generated code – code in which any change to the generation process creates an 

entirely new file rather than incremental changes. 

 If a file was above the 99th percentile on size (3600 lines) all of its changes were removed from the 

sample of changes and the file itself was removed from the sample of files.  

6.3.2.3 Rules used to Include or Exclude Developers From Consideration in Productivity and 
Turnover studies 

The following method was used to determine if a developer-release would be included in the sample: 

 A person had to have a title indicating a primary responsibility for developing code and be in a 

department responsible for developing code in the shipping product.  This excludes ―testers‖ who 

also developed code, but were primarily responsible for creating unit or system tests.  It excludes 

people whose primary responsibility was developing and maintaining internal infrastructure and 

tools.  It also excludes consultants and individuals in training programs. 

 A developer had to be employed for the entire duration of a development window to be considered 

for that time-period. 

 For inclusion in the productivity analyses, a developer had to submit at least one change to a core file 

during every release they would be included in as a developer-release data point.  For inclusion in the 

turnover analysis, a developer had to submit at least one core change during any of the 8 releases 

studied. 
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 In the productivity analysis, a developer had to have submitted more than 50% of their lines of code 

into C++ files represented in the DSM during a release for inclusion.  In the turnover analysis, a 

developer had to submit more than 50% of their lines of code into files in DSMs over the entire time 

period. Because many developers wrote code in other languages in addition to C++, it was important 

to limit the developer sample to those who were most directly impacted by the architectural 

complexity being examined. 

 In the productivity analysis, a developer had to be responsible for coding at least 10 features or bug 

fixes that were tracked in the change tracking system during every release they were included.  In the 

turnover analysis, a developer had to code at least 10 tracked changes over the eight-release window.  

Because it is important to differentiate between feature development and bug-fixing activities in these 

studies, we only include individuals with sample sizes that allow us to reasonably estimate the 

proportion of their work dedicated to each activity. 

 At least 70% of a developer‘s changes must have been deemed ―valid‖ by the procedure outlined 

above.  Developers with more invalid changes were removed from the analysis.  

6.4 Structure and Complexity of Files in the Sample 

Figure 37 shows DSMs and the distribution of visibility scores for release 7.  It illustrates the means by which 

each C++ file in the sample was classified as peripheral, utility, control, or core.  The upper-left DSM is 

sorted according to the directory structure.  Bands of utility files are clearly visible, as are modules along the 

diagonal.  The upper-right DSM is lower-diagonalized.  The small box in the upper left contains utility files, 

followed by core, peripheral, and control file regions.  The bottom two panels plot the visibility scores for 

files in a sorted order.  When this is done, the bimodal nature of these visibility scores is apparent.  Iron 

Bridge‘s C++ codebase has a core-periphery rather than a hierarchical structure.  These charts also indicate 

how files were assigned architectural complexity classifications.  The prominent ridge in the middle of each 

graph was chosen as the demarcation line between ―low‖ and ―high‖ scores for purposes of binning.  Once 

files were assigned to ―low‖ or ―high‖ buckets on both visibility dimensions, classification was 
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straightforward.   Table 5 shows the number of files and the number in each McCabe and architectural 

complexity classification for each of the 8 releases.  Note the growth of the codebase and of the size of the 

core through time. 
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Figure 37: Release 7 DSMs and Visibility Plots 
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Table 5: File Count Broken Down by Complexity Classification 

Release 1 2 3 4 5 6 7 8 

Total number of files 9937 10447 10671 11576 12186 12311 13295 13941 
Architectural complexity 
classification 

        Peripheral 2691 2305 2158 2193 1835 2981 1975 1901 
Utility 543 602 636 915 679 780 685 718 
Control 3262 3503 3371 3564 3923 2704 4127 4461 
Core 3441 4037 4506 4904 5749 5846 6508 6861 

Component complexity 
classification 

        McCabe Low 5973 6321 6534 7282 7702 7904 8691 9241 
McCabe Mid 2076 2174 2206 2336 2436 2412 2565 2645 
McCabe High 1448 1506 1499 1506 1586 1567 1611 1616 
McCabe Very High 440 446 432 452 462 428 428 439 

Mean McCabe Score 14.32 13.92 13.50 12.98 12.80 12.42 11.92 11.51 
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7 Result 1: Link Between Architectural Complexity and Defects 

In our first analysis we explore the hypothesis that architecturally complex files experience more defects.  We 

explore the relationship between the architectural complexity of individual files and the amount of bug-fix 

development activity that occurs in those files.  We control for file size, age, and non-bug related code-churn, 

and McCabe cyclomatic complexity. 

7.1 Descriptive Statistics on Files and Complexity 

For each of the 8 releases studied, between 9937 and 13941 C++ files were examined.  While the last release 

contained nearly 14,000 files, roughly 2,000 files were created or modified during any given release.  These 

2,000 files were changed approximately 15,000 times during each release.  Those 15,000 changes contained 

approximately 600,000 line additions or deletions.  The number of changes and lines affecting files is highly 

skewed. Table 6 shows activity during each release. Table 7 shows a variety of mean values related to file size, 

change size, and activity.  The average file had 49 lines changed in it during the typical release cycle.  33 of 

those lines were changed to implement features and do other tasks, while 16 were changed to fix bugs.



 

 

 
Table 6: Measures of Development Activity During Each Release 

Release 1 2 3 4 5 6 7 8 

Total number of files 9937 10447 10671 11576 12186 12311 13295 13941 

Number of files modified 2139 2844 3778 3414 3649 3452 3702 3150 

for features & tasks 1462 2228 2840 2584 2834 2755 2882 2453 
for bug fixes 1356 1502 1980 1847 1980 1759 2046 1612 

Number of changes 6019 7728 10343 10515 10601 10085 11439 8203 

for features & tasks 3153 4643 6210 6630 6273 6101 6473 5055 

for bug fixes 2866 3085 4133 3885 4328 3984 4966 3148 

Number of lines in files 5627014 5953113 6047870 6277627 6772103 6891070 7096692 7239940 

Number of lines modified 360403 509704 632241 645008 713688 596700 674741 504823 

for features & tasks 198508 332628 439290 445008 485146 407988 445833 350248 

for bug fixes 161895 177076 192951 200000 228542 188712 228908 154575 

 
 

Table 7: Averages for File Size, Change Size, and Development Activity During Each Release 

Release 1 2 3 4 5 6 7 8 

Mean file age 3.70 3.78 3.94 4.12 4.21 4.37 4.57 4.61 

Mean file size 566.27 569.84 566.76 542.30 555.73 559.75 533.79 519.33 

Mean change size 59.88 65.96 61.13 61.34 67.32 59.17 58.99 61.54 

Mean changes per file 0.61 0.74 0.97 0.91 0.87 0.82 0.86 0.59 

for features & tasks 0.32 0.44 0.58 0.57 0.51 0.50 0.49 0.36 

for bug fixes 0.29 0.30 0.39 0.34 0.36 0.32 0.37 0.23 

Mean lines changed per file 36.27 48.79 59.25 55.72 58.57 48.47 50.75 36.21 

for features & tasks 19.98 31.84 41.17 38.44 39.81 33.14 33.53 25.12 

for bug fixes 16.29 16.95 18.08 17.28 18.75 15.33 17.22 11.09 
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7.2 Modeling Architectural Complexity and Defects 

Our first proposition is that all else being equal, files with more architectural complexity will have more 

defects.  In order to analyze the determinants of defects in a file, we construct two statistical models using 

the C++ source-code file as the unit of analysis.  In the first, a count of the number of changes submitted 

to fix defects was used as the dependent variable.  In the second, the number of lines of code modified 

(added and deleted) to fix defects was used as the dependent variable.  The independent variable under 

study was an indicator of whether each file was categorized as ―peripheral‖, ―utility‖, ―control‖, or ―core‖ 

according to the previously described architectural complexity classification devised by MacCormack, 

Baldwin, and Rusnak. 

A variety of controls were included for each file including measures of activity that was not bug related 

(e.g. the addition of new features), a measure of the file‘s size, a measure of the file‘s age, and the McCabe 

cyclomatic complexity metric designed to measure the complexity contained within the file.  

Parameters for both models were estimated using a Negative Binomial regression due to the count nature 

of the dependent variable and the fact that the conditional data is overdispersed, invalidating the 

assumptions of the simpler Poisson model.  The Zelig framework was used to run regressions and 

subsequent simulations to estimate parameters values. [198-201] Data for files from each of the 8 releases 

was combined, and a dummy variable was included to indicate the release.  Nearly 100,000 data points 

were used in these regressions.  Each observation point represents a file-release version, including 

approximately 12,000 files from each of 8 releases. 
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Table 8 lists variables included in models in which the number of changes or lines of code required to fix 

bugs in a file is predicted. 

Table 8: Variables Included In Statistical Models Predicting Defect Proneness 

Changes submitted 
to fix bugs 

Dependent 
Variable 

Count The number of changes that were submitted to 
fix bugs in a development window.  If a change 
was associated with multiple change requests, 
only some of which were to fix bugs, then only 
a portion of the change will count as a bug fix. 

Lines of code 
changed to fix 
bugs 

Dependent 
Variable 

Count The number of lines changes associated with 
bug fix changes.  If a change is allocated 
proportionally to bug fix and non-bug fix 
categories, then this line count is allocated 
proportionally as well 

Changes submitted 
to implement 
features or do 
other non-bug 
related tasks 

Control Count The number of changes that were submitted for 
other reasons than to fix bugs.  These include 
changes to implement new features or perform 
tasks such as refactoring.  If a change was 
associated with multiple change request, only 
some of which were not to fix bugs, then only a 
fraction of the change will count here. 

Lines of code 
submitted to 
implement features 
or do other non-
bug related tasks 

Control Count The number of lines changed associated with 
non-bug fix changes.  If a change is allocated 
proportionally to bug fix and non-bug fix 
categories, then this line count is allocated 
proportionally as well. 

Number of lines of 
code contained in 
file 

Control Count The number of lines of code in a source code 
file in the shipped (released to customers) 
version of that file. 

Age of file Control Float The age of the file (in years) on the date that of 
release to customers.  Computed by subtracting 
the date of the file's first change from the 
release date. 

McCabe 
cyclomatic 
complexity 
classification 

Control Categorical Modified McCabe cyclomatic complexity scores 
were computed for every function/method in 
each file.  Files were then assigned the score of 
the highest scoring function/method it 
contained.  Based on these McCabe scores, each 
file was categorized as having McCabe 
complexity that was "undefined" (if 0), "low" (if 
between 1-10), "mid" (if between 11-20), "high" 
(if between 21-50), and "very high" (if above 
50).  [112] 
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Release index Control Categorical Each file observation has dummy variables 
indicating which of the 8 development windows 
the observation was made for. 

Architectural 
complexity 
classification 

Independent 
Variable 

Categorical Based on the logic outlined in previous sections 
on architectural complexity, each file is 
categorized as being "peripheral," "utility," 
"control," or "core" using the transitive closure 
based techniques developed by MacCormack, 
Baldwin, and Rusnak [8, 9] 
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7.3 Regression Models 

Table 9 shows the result of regressions predicting the number of defect correction changes that go into a file 

over the course of a release while Table 10 shows the result of regressions predicting the number of lines 

of code changed to fix defects in a file over the course of a release.  Both sets of models behave similarly.  As 

one might expect, the number of bug fixes in a file is correlated with the size of the file and the number 

of non-bug changes.  Our intuition about the effect of a file‘s age is also confirmed.  Older files have 

lower defect density.  Also note that the number of defect changes submitted to a file generally increases 

with McCabe‘s cyclomatic complexity, but goes down as one moves from files in the ―high‖ range (21-50) 

to the ―untestable‖ range (>50).  This discrepancy is eliminated in the models predicting the number of 

lines of code changed to fix defects.  A few other control variables not shown in the tables were tested as 

well.11 

Note that our first proposition holds.  Files with high architectural complexity (those considered ―core‖) 

have defect densities that are significantly higher than files that are ―peripheral‖ and ―utility‖ and 

somewhat higher than files classified as ―control‖ files.  All results are significant at the 0.1% level. 

                                                      

11 When direct fan-in and fan-out are included in regression models fan-out is significant and fan-in tends 
not to be.  These variables are not included in models presented here because they strongly correlate with 
visibility scores.  Even when they are included, the statistical results presented below still hold. 



 

 

Table 9: Predicting Number of Changes in a File to Fix Bugs.  (Negative Binomial Model) 

Parameter Model 1: 
controls 

  Model 2: 
cyclomatic 
complexity 

  Model 3: 
architectural 
complexity 

  Model 4: 
combined 

  

LOC in file 0.00051873 *** 0.000325008 *** 0.000435369 *** 0.000232755 *** 

Non-bug changes 0.47845193 *** 0.456561328 *** 0.432710048 *** 0.407008559 *** 

File age -0.05603372 *** -0.067722601 *** -0.052193625 *** -0.065597024 *** 

Cyclomatic: mid 
  

0.621477523 *** 
  

0.626102941 *** 

Cyclomatic: high 
  

0.792611777 *** 
  

0.851977307 *** 

Cyclomatic: very high 
  

0.607481099 *** 
  

0.727127107 *** 

Architectural: utility 
    

0.303542216 *** 0.396496711 *** 

Architectural: control 
    

0.898747327 *** 0.860218904 *** 

Architectural: core         1.186554887 *** 1.226177521 *** 

Residual Deviance 40809   41387   41004   41672   

Degrees of Freedom 94353 
 

94350 
 

94350 
 

94347 
 AIC 108713 

 
107756 

 
107242 

 
106181 

 Theta 0.28199 
 

0.30896 
 

0.31141 
 

0.34638 
 Std-err 0.00446 

 
0.00509 

 
0.00507 

 
0.00591 

 2 x log-lik -108689   -107726.013   -107212.489   -106144.866   

N = 94364 files observations (from 8 releases) 
       Dummy variables for each of 8 releases omitted.   
       Significance codes: .<0.1, *<0.05, **<0.01, 

***<0.001 
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Table 10: Predicting LOC Changed in a File to Fix Bugs.  (Negative Binomial Model) 

Parameter Model 1: 
controls 

  Model 2: 
cyclomatic 
complexity 

  Model 3: 
architectural 
complexity 

  Model 4: 
combined 

  

LOC in file 0.00156486 *** 0.0011712 *** 0.00143183 *** 0.00104115 *** 

Non-bug lines change 0.00372536 *** 0.00353601 *** 0.00355368 *** 0.00335322 *** 

File age -0.10050305 *** -0.11730352 *** -0.1026859 *** -0.11853279 *** 

Cyclomatic: mid 
  

0.774729 *** 
  

0.70392074 *** 

Cyclomatic: high 
  

0.93363115 *** 
  

0.95513134 *** 

Cyclomatic: very high 
  

0.91923347 *** 
  

0.96444595 *** 

Architectural: utility 
    

0.2018549 * 0.35797922 *** 

Architectural: control 
    

0.94111466 *** 0.84721344 *** 

Architectural: core         1.14823521 *** 1.14683088 *** 

Residual Deviance 30370   30418   30428   30475   

Degrees of Freedom 94353 
 

94350 
 

94350 
 

94347 
 AIC 227861 

 
227512 

 
227403 

 
227079 

 Theta 0.030212 
 

0.030692 
 

0.030836 
 

0.031295 
 Std-err 0.000285 

 
0.00029 

 
0.000291 

 
0.000295 

 2 x log-lik -227837.302   -227482.025   -227373.406   -227042.861   

N = 94364 files observations (from 8 releases) 
       Dummy variables for each of 8 releases omitted.   
       Significance codes: .<0.1, *<0.05, **<0.01, 

***<0.001 
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7.4 Interpretation of Results 

Simulations were run to explore effect sizes and look at the response seen in outcome variables in 

response to changes in the independent variables.  In the following simulations, controls were set to their 

mean values.  Lines of code in a file was set to 550, file age was set to 4.2 years, the number of changes 

submitted to files to implement features and do other non-bug related tasks was set to 0.47, and the 

number of feature & task lines of code churn was set to 33.  Table 11 shows the result of 16 simulations 

that tested each possible combination of McCabe and architectural complexity classifications to determine 

the effect of both forms of complexity on the number of bugs appearing in a typical file.  Figure 38 and 

Figure 39 contain plots of the simulation results shown in Table 11.   

 
Table 11: Expected Value For the Number of Bug-Fix Changes in the 
"Typical" File 

  

Architectural 

  
Peripheral Utility Control Core 

McCabe Low 0.059  0.087  0.139  0.200  

 
(0.007) (0.011) (0.016) (0.023) 

Mid 0.110  0.163  0.259  0.374  

 
(0.013) (0.021) (0.030) (0.044) 

High 0.138  0.205  0.325  0.469  

 
(0.017) (0.026) (0.038) (0.055) 

Very high 0.121  0.181  0.287  0.414  

  (0.015) (0.024) (0.035) (0.051) 

Note: standard deviation in parentheses 
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Figure 38: Expected Number of Bugs Fixed in a File (1) 
 
 

 

Figure 39: Expected Number of Bugs Fixed in a File (2) 
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high McCabe scores are expected to have 2.1 times as many bug fixes as files with low McCabe scores.  

Changes in architectural complexity have an impact of roughly the same order of magnitude.  When 

compared against the periphery, utility files have 48% more defects, control files have 2.4 times as many 
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combination, the effects are quite large.  A core file with a high McCabe score is expected to have 8 times 

as many defects as a peripheral file with a low McCabe score. 

Because changes vary dramatically in size, simulations were run to estimate the expected number of lines 

of code changed to fix defects as well.  Table 12, Figure 40, and Figure 41 show the results of these 

simulations. 

Table 12: Expected Value For the Number of Lines Submitted to Fix Bugs 
in "Typical" File 

  

Architectural 

  
Peripheral Utility Control Core 

McCabe Low 2.220  3.183  5.178  6.985  

 
(0.366) (0.563) (0.844) (1.130) 

Mid 4.490  6.441  10.470  14.132  

 
(0.756) (1.166) (1.737) (2.336) 

High 5.776  8.276  13.473  18.182  

 
(0.993) (1.524) (2.286) (3.080) 

Very high 5.853  8.379  13.658  18.413  

  (1.141) (1.711) (2.630) (3.562) 

Note: standard deviation in parentheses 
    

 

Figure 40: Expected Number of Lines to Fix Bugs in a File (1) 
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Figure 41: Expected Number of Lines to Fix Bugs in a File (2) 
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8 Result 2: Link Between Architectural Complexity and 
Productivity 

In our second analysis we explore the hypothesis that when developers work in architecturally complex 

files their productivity is impaired.  We explore the relationship between the fraction of lines of code an 

individual contributes to ―core‖ files during a release and their total number of lines of code produced 

during that release.  In these models we control for a variety of other factors that could each be 

considered alternative explanations for why a developer‘s productivity may have declined.  Controls tested 

include a developer‘s time with the firm, managerial status, fraction of activity working in new (rather 

than legacy) code, faction of activity spent fixing bugs, and fraction of activity working in files with high 

McCabe Cylomatic complexity.  The goal of these models is to determine if architectural complexity has a 

significant impact on the productivity of developers, even when weighed against these alternative 

explanations. 

8.1 Descriptive Statistics on Developer Productivity 

The sample of developers used to explore productivity included 178 people who wrote a majority of their 

code in the C++ portion of Iron Bridge‘s codebase.  Because 8 releases were measured, developers had 

the opportunity to appear in the dataset up to 8 times.  Due to repeats, this sample consisted of 478 

distinct developer-release observations for use in panel-data analysis.  The sample included 388 

observations of individual contributors and 90 observations of managers.  The median amount of time a 

developer-release had been with the company was slightly over 4 years.  Over the course of 8 releases, the 

developer-releases observed produced nearly 2 million lines of code as measured by the addition and 

deletion of lines in file changes.  Of these 2 million lines produced, 1.1 million were created to implement 

features or perform some other non-bug related task such as refactoring.  800,000 lines were produced to 

fix bugs.  Table 13 shows the number of developers in each sample, information about their tenure and 

managerial status, and information about the lines of code they produced on average to implement 

features and fix bugs. 
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The median developer produced 3,200 lines of code per release, while the mean developer produced 

4,000 lines changed over the course of a release.  Productivity between individuals was highly skewed.  

The top quartile has approximately 10 times the productivity as the bottom quartile.  (This is a striking 

but generally understood phenomenon.) 

Table 14 breaks down development activity by the type of work being performed (feature work vs. bug 

fix) and the location of that work.  Approximately half of the lines coded are submitted to new files and 

half to legacy files.  One third of activity takes place in files with McCabe scores of high or very high.  Three 

quarters of activity occurs in core files.



 

 

 
Table 13: Developers and Activity in Each Release 

Release 1 2 3 4 5 6 7 8 

Developers in sample 35 46 59 67 64 67 69 71 
number of managers 8 9 15 13 12 13 12 8 
number of ind. contributors 27 37 44 54 52 54 57 63 

Mean time with company 4.5 4.5 5.2 4.8 4.7 5.5 5.9 5.5 
Changes produced per developer 69 79 87 70 86 82 69 68 
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676 

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260 

for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410 



 

 

 

 
Table 14: Activity For the Average Developer by Task and Location in Codebase For Each Release 

Release 1 2 3 4 5 6 7 8 

Developers in sample 35 46 59 67 64 67 69 71 
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676 
C++ lines produced per developer 2471 3030 3160 2784 3622 3261 2582 2763 

Type of work                 

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260 
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410 
% lines for bug fixes 63% 48% 48% 39% 35% 35% 45% 38% 

Age of file 

        old file (>= 2 years) 2006 2235 2104 1704 2420 2204 1575 1791 
new file (< 2 years) 1319 1882 2274 1951 2518 2162 1771 1828 
% lines in new files 39% 45% 51% 53% 51% 49% 53% 50% 

Component complexity 

        low McCabe (< 21) 1901 2550 2742 2428 2737 2729 2166 2198 
high McCabe (>= 21) 1354 1509 1614 1215 2171 1608 1148 1407 
% lines high McCabe file 40% 36% 36% 33% 44% 37% 34% 38% 

Architectural complexity 

        peripheral file 241 47 142 112 102 147 130 20 
utility file 33 12 8 58 86 73 21 28 
control file 609 402 737 733 761 614 435 736 
core file 1511 2510 2242 1856 2635 2392 1971 1976 
% lines in core file 61% 83% 71% 67% 73% 73% 76% 72% 
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The histograms in Figure 42 and Figure 43 show the distribution of developer contributions to files with 

high McCabe complexity scores (those >20) and files with high architectural complexity (those in the 

core).  Note that over 200 developer-releases make above 90% of their contributions to core files. 

 

Figure 42: Histogram of Activity in High 
McCabe Files 

 

Figure 43: Histogram of Activity in Core 

 

8.2 Modeling Architectural Complexity and Developer Productivity 

Our second proposition is that architectural complexity negatively impacts productivity.  In order to 

analyze the determinants of developer productivity, we construct three statistical models using the 

software developer as the unit of analysis.  In the first model, the dependent variable is the total number 

of lines produced by an individual to implement features or do other non bug-related tasks (the number 

of bug-fix lines is included as a control).  In the second model, the dependent variable is the number of 

lines of code produced by that individual to fix defects (the number of lines that person produced for 

purposes other than to fix bugs is included as a control).  In the third model, the dependent variable is the 

total number of lines of code produced by an individual during a given release window for features, bug 

fixes, and other tasks (with the percentage of lines dedicated to bug-fixes is included as a control).  The 

independent variable under study in all three sets of models is the percentage of lines a person submitted 

to ―core‖ files.  This measure is designed to estimate the amount of work the individual does in files with 

high levels of architectural complexity. 
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The purpose of the first model is to determine how productive individuals were when implementing 

features or doing other non-bug related tasks in files with varying levels of architectural complexity.  The 

second model is used to estimate how productive individuals were while fixing bugs in files with different 

levels of architectural complexity.  The purpose of the third model is to determine the impact of 

architectural complexity on the overall productivity (in terms of total lines produced) of the individual.   

In each of these models, we use a panel-data approach that aims to control for individual differences in 

developer productivity.  Dummy variables are included for each of the 8 releases and each of the 

individual developers.  By including these dummy variables, we construct regressions that capture changes 

in productivity due to complexity within the individual rather than between them.  Put another way, these 

regressions are designed to determine if individuals were less productive during releases during which 

they worked in more complex code rather than to determine if a group of people working in more 

complex code is less productive than a group working in less complex code.  (Even if the former 

statement is true, the latter may not be the case if highly skilled developers are disproportionately 

allocated to the core.) 

A variety of controls were included for the individual including length of employment, managerial status, 

the amount of work done in new (rather than legacy) files and amount of work done in files with high 

levels of McCabe cyclomatic complexity.12 

Parameters for all models were estimated using a Negative Binomial regression due to the count nature of 

the dependent variable and the fact that the conditional data is overdispersed, invalidating the 

assumptions of the simpler Poisson model.  The Zelig framework was used to run regressions and 

subsequent simulations to estimate parameter values.  [198-201] 

                                                      

12 Control variables representing the proportion of lines submitted to files with ―high‖ direct fan-in and 
direct-fan out were not included due to the fact that they are highly correlated with visibility scores and 
because the extreme levels of skew in their distributions (the distribution of fan-in scores fit a power-law 
distribution for instance) make it difficult to obtain or interpret results.  Due to the highly skewed nature 
of the data, the sample of files with ―high‖ direct visibility scores is insufficiently small. 
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The following table lists variables used in the three sets of models: 

Table 15: Variables Included In Statistical Models Predicting Developer Productivity 

Variable Purpose Type Description 

Lines of code 
produced to 
implement features 
or perform other 
non-bug related 
tasks 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer to implement features or do some 
other non-bug related task.  If a change was 
associated with multiple change requests, some 
of which were to fix bugs, then only a portion 
of the change will count as a bug fix, and the 
rest will be considered a feature or task.  The 
number of lines of code in a change will be 
allocated proportionally based on the 
proportion allocated to bugs and non-bugs. 

Lines of code 
produced to fix 
bugs 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer to fix bugs during a release window.  
If a change was associated with multiple 
change requests, only some of which were to 
fix bugs, then only a portion of the change will 
count as a bug fix.  The number of lines of 
code in a change will be allocated 
proportionally based on the proportion 
allocated to bugs and non-bugs. 

Lines of code 
produced to fix 
bugs, implement 
features, or 
perform other 
tasks 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer during a release window.  All 
changes submitted by the developer during the 
release window to fix bugs, implement 
features, or do other tasks are considered and 
the lines added plus the lines deleted in each of 
those changes are totaled. 

Years employed Control Float The time employed (in years) of the developer 
on the date of the software release.  Computed 
by subtracting the developer's hire date from 
the release date. 

Is manager? Control Boolean Boolean variable indicating whether a 
developer is a manager on the release date. 

Percent of lines 
submitted to new 
files 

Control Percent A file is considered to be a "new file" if it is 
less than two years old.  File age is computed 
by subtracting the date of the file's first change 
from the release date.  The percentage of lines 
submitted to new files is computed by 
determining the proportion of lines produced 
by a developer during a release that modified 
new files. 
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Percent of lines 
submitted to fix 
bugs 

Control Percent The percentage of lines of code that were 
produced by a developer to fix bugs.  If a 
change was associated with multiple change 
requests, only some of which were to fix bugs, 
then only a portion of the change will count as 
a bug fix.  The number of lines of code in a 
change will be allocated proportionally based 
on the proportion allocated to bugs and non-
bugs. 

Percent of lines 
submitted into files 
with "high" or 
"very high" 
McCabe 
classifications 

Control Percent A file is considered to have a "high" or "very 
high" McCabe score if the Modified cyclomatic 
complexity of the most complex 
function/method is above 20.  The percentage 
of lines submitted to files with "high" or "very 
high" McCabe scores is computed by 
determining the proportion of lines produced 
by a developer during a release that modified 
those files.  [112] 

Release index Control Categorical Each file observation has dummy variables 
indicating which of the 8 development 
windows the observation was made for. 

Login Panel Categorical Each developer login is used as a dummy 
variable.  This variable is used in fixed-effects 
panel-data models. 

Percent of lines 
submitted to core 
files 

Independent 
Variable 

Percent Determined by finding the proportion of lines 
produced that were submitted to files given the 
architectural complexity classification of "core" 
using the transitive closure based techniques 
developed by MacCormack, Baldwin, and 
Rusnak [8, 9] 

 

8.3 Regression Models 

The results for regressions predicting the productivity of an individual during a release window are shown 

in Table 16, Table 17, and Table 18.  Note that while each of these regressions contained dummy 

variables for the release and the individual, these dummies were omitted from tables.  

Table 16 shows results for regressions in which the productivity of individuals implementing features and 

doing other non-bug tasks is predicted.  (Each model contained the lines produced to fix bugs as a 

control.)  Developers are much more productive when implementing features and working in new (rather 

than legacy) files.  They are less productive when implementing features and working in files with high 
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McCabe cyclomatic complexity.  After all controls are included in the model, developers are also found to 

be less productive when developing features and working in core files.  This result is significant at the 5% 

level. 

Table 17 shows results for regression in which the productivity of individuals correcting defects during a 

release is predicted.  (Each model contained the lines produced for feature work & other non-bug related 

tasks as a control.)  Developers are shown to be much more productive when implementing bug fixes if 

they are working in new (rather than legacy files).  Developers with more experience (those with longer 

tenures at the firm) are more productive when fixing bugs than less experienced developers.  The ability 

to effectively fix bugs appears to grow with experience more than feature-development productivity.  

Developers are also found to be much less productive when fixing bugs in the core than when fixing bugs 

elsewhere.  This result is significant at the 0.1% level.  Working in the core appears to have a stronger 

negative impact on the productivity of those fixing bugs than those implementing features. 

Table 18 shows results for regressions in which total developer productivity (features and bug-fixes 

combined) during a release is predicted.  Employees with more years of experience were more productive.  

While this is not surprising, it is interesting to note that the strength of the effect grew as other controls 

were added, suggesting that as employees gain experience, they are moved into more complex regions of 

the codebase, work more on legacy code, or work on harder bug fixes, thereby suppressing the 

productivity gains they would have if left in more approachable regions of the codebase.  When 

developers work in new files (those less than 2 years old) they are much more productive. This suggests 

that new feature development is easier than maintaining legacy code.  As might be expected, developers 

are much less productive when they are working on bug fixes than when they are implementing features.  

Surprisingly, McCabe cyclomatic complexity had no statistically significant impact on overall developer 

productivity, however.   

Note that our second proposition holds.  During time periods in which an individual worked in core files, 

the number of lines of code they produced declined.  Architectural complexity has a significant negative 

impact on a developer‘s overall productivity.  This result is significant at the 1% level. 



 

 

 

Table 16: Predicting LOC Produced per Developer to Implement Features For One Release  (Neg Binomial Panel Data Model) 
   Parameter Model 1: 

developer 
attributes 

  Model 2: 
type of work 

  Model 3: 
cyclomatic 
complexity 

  Model 4: all 
controls 

  Model 5: 
architectural 
complexity 

  Model 6: 
combined 

  

Lines for bug fixes -7.12E-05   -6.84E-05   -0.00005961   -6.74E-05   -0.00007681 . -7.84E-05 . 

Log(years employed) 2.80E-01 
     

4.93E-01 
   

4.84E-01 
 Is manager? -2.83E-01 

     
-2.52E-01 

   
-2.93E-01 

 Pct lines in new files 
  

1.80E+00 *** 
  

1.70E+00 *** 
  

1.71E+00 *** 

Pct lines high cyclomatic 
    

-1.16601056 *** -6.48E-01 . 
  

-6.13E-01 . 

Pct lines in core                 -0.61094326 . -6.19E-01 * 

Residual Deviance 560.7696   558.4638   560.5962   558.324   560.7079   558.1296   

Degrees of Freedom 290 
 

291 
 

291 
 

288 
 

291 
 

287 
 AIC 8170.656 

 
8135.143 

 
8162.143 

 
8136.784 

 
8166.867 

 
8135.753 

 Theta 0.8512584 
 

0.902979 
 

0.8614868 
 

0.910243 
 

0.8540307 
 

0.915163 
 Std-err 0.05032488 

 
0.05380377 

 
0.05103293 

 
0.0543059 

 
0.05051371 

 
0.05464003 

 2 x log-lik -7792.656   -7759.143   -7786.143   -7754.784   -7790.867   -7751.753   

N = 478 developer/releases 
            Dummy variables for each of 8 releases omitted.  Dummy variables for each of 178 developers omitted. 

     Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001 
          



 

 

 

Table 17: Predicting LOC Produced per Developer to Fix Defects For One Release  (Neg Binomial Panel Data Model) 

Parameter Model 1: 
developer 
attributes 

  Model 2: 
type of work 

  Model 3: 
cyclomatic 
complexity 

  Model 4: all 
controls 

  Model 5: 
architectural 
complexity 

  Model 6: 
combined 

  

Lines for features & tasks -0.00002894 . -0.00003436 * -0.00002287   -0.00003286 . -0.00003183 . -0.00003869 * 

Log(years employed) 0.41418368 * 
    

0.47664084 ** 
  

0.51248987 ** 

Is manager? -0.00925084 
     

0.00234582 
   

-0.05832787 
 Pct lines in new files 

  
0.21861235 

   
0.31967026 * 

  
0.35717162 * 

Pct lines high cyclomatic 
    

0.33677149 . 0.44466236 * 
  

0.49647843 ** 

Pct lines in core                 -0.48544331 ** -0.56740321 *** 

Residual Deviance 509.5084   509.5916   509.5686   509.208   509.4193   508.8542   

Degrees of Freedom 290 
 

291 
 

291 
 

288 
 

291 
 

287 
 AIC 7934.951 

 
7935.576 

 
7934.91 

 
7931.536 

 
7930.616 

 
7923.786 

 Theta 2.916188 
 

2.901444 
 

2.905165 
 

2.957875 
 

2.929278 
 

3.013898 
 Std-err 0.1808552 

 
0.1798761 

 
0.1801246 

 
0.183591 

 
0.1817136 

 
0.1872798 

 2 x log-lik -7556.951   -7559.576   -7558.91   -7549.536   -7554.616   -7539.786   

N = 478 developer/releases 
            Dummy variables for each of 8 releases omitted.  Dummy variables for each of 178 developers omitted. 

     Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001 
          



 

 

 

Table 18: Predicting LOC Produced per Developer For One Release.  (Neg Binomial Panel Data Model) 
     Parameter Model 1: 

developer 
attributes 

  Model 2: 
type of work 

  Model 3: 
cyclomatic 
complexity 

  Model 4: all 
controls 

  Model 5: 
architectural 
complexity 

  Model 6: 
combined 

  

Log(years employed) 0.233711           0.32335 *     0.336831 * 

Is manager? -0.12336 
     

-0.0397 
   

-0.081573 
 Pct lines in new files 

  
0.524365 *** 

  
0.56379 *** 

  
0.578597 *** 

Pct lines for bugs 
  

-1.075852 *** 
  

-1.08704 *** 
  

-1.076668 *** 

Pct lines high cyclomatic 
    

-0.312413 . 0.14775 
   

0.171612 
 Pct lines in core                 -0.417167 ** -0.399158 ** 

Residual Deviance 500.67   495.95   500.63   495.81   500.51   495.6   

Degrees of Freedom 291 
 

291 
 

292 
 

288 
 

292 
 

287 
 AIC 8752.2 

 
8624.5 

 
8749.3 

 
8625.3 

 
8745.8 

 
8619.4 

 Theta 3.521 
 

4.51 
 

3.527 
 

4.557 
 

3.551 
 

4.628 
 Std-err 0.218 

 
0.283 

 
0.219 

 
0.286 

 
0.22 

 
0.29 

 2 x log-lik -8376.187   -8248.529   -8375.327   -8243.285   -8371.818   -8235.376   

N = 478 developer/releases 
            Dummy variables for each of 8 releases omitted.  Dummy variables for each of 178 developers omitted. 

     Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001 
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8.4 Interpretation of Results 

 

Figure 44: Developer Productivity and Architectural Complexity 
 
 
Three sets of simulations were run to determine the response of the outcome variables (the number of lines 

that the typical developer would produce during a release) to changes in a developer‘s percentage of activity in 

the core.  In these simulations, most control variables were set to their mean values.  The ―typical‖ developer 

was selected by choosing the individual owning the median-valued person-specific dummy variable 
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coefficient.  Managerial status was set to false.  Length of employment was set to the mean value of 5.1 years.  

The percent of lines contributed by this prototypical developer to new files (those under 2 years of age) was 

set to 44%.  The percent of lines contributed to files with high McCabe cyclomatic complexity (with scores 

above 20) was set to 38%. 

A simulation was run to predict the expected productivity that would be achieved if 100% of a developer‘s 

effort could be dedicated to implementing new features or doing other non-bug related tasks and no bug-

fixing were necessary.  This simulation used the full version of the regression model shown in Table 16.  (In 

addition to setting controls to the values just described, the control variable lines for bug fixes was set to 0.)  The 

blue line shown in Figure 44 shows the result of varying the percent of lines submitted to core files on feature 

productivity for this hypothetical (and blessed) individual.  All else being equal, the developer working only 

on features in the periphery would produce 10655 lines of changes during a release.  This same individual 

would only produce 6083 lines for features when positioned in the core.  

A second simulation was run to predict the expected productivity that would be achieved if a developer was 

forced to dedicate 100% of his effort to fixing bugs.  This simulation used the full version of the regression 

model shown in Table 17.  (In addition to setting controls to the values previously described, the control 

variable lines for features and tasks was set to 0.)  The red line in Figure 44 shows the response of bug-fix 

productivity when the percent of lines submitted to core is varied.  All else being equal, if our unlucky 

developer working only on bug fixes is in the periphery, 2815 lines of changes would be produced.  This same 

individual would produce only 1567 lines if positioned in the core. 

Our third (and final) simulation was run to predict the expected productivity that would be achieved if a 

developer spent the typical proportion of time split between feature work and bug fixes.  This simulation 

used the full version of the regression model shown in Table 18.  (In addition to setting controls to the values 

previously described, the control variable pct lines for bugs was set to the mean value of 52%.)  The green line in 

Figure 44 shows the impact of varying the percent of lines submitted to core files on overall productivity.  All 
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else being equal, the typical developer working in the periphery will produce 5359 lines of changes during a 

release while this same individual would only produce 3594 lines if positioned in the core. 

Our results suggest that the effect that architectural complexity has on developer productivity is quite strong.  

All else being equal, architectural complexity accounts for a near halving of the lines of code that can be 

produced by an individual in any given release as one moves from the periphery to the core.  At Iron Bridge, 

approximately 70% of lines produced go into core files. Based on the contents of Figure 44, one might 

speculate that a refactoring that shank the core such that only 50% of average developer‘s lines produced 

went into core files would yield a productivity increase of 10%.  In addition, one should remember that ―all 

else‖ is not actually equal.  The strong relationship between defects and complexity found in the previous 

chapter tells us that developers in the periphery will spend more time than average developing features on the 

―blue curve‖ in Figure 44 while developers in the core will spend more time on the ―red curve‖ contending 

with bugs.  The productivity loss that results from moving form the periphery to the core may therefore be 

substantially greater than 50%.  If a refactoring effort successfully shrank the core it would move the average 

reduce the effort the average developer dedicates to development in the core (moving them further towards 

the left on the green line) and reduce the number of bugs a developer had to contend with (increasing the 

amount of time spent on the blue curve rather than the red curve).  The combined effect could lead to 

significant productivity gains. 

 



 

 

 

Table 19: Predicted Number of Lines Produced by Average Developer at Various Architectural 
Complexity Levels if Only Implementing Features or Doing Other Non-Bug Related Tasks 

Percent of lines 
submitted to core 

Expected number 
of lines produced 

Standard 
deviation 

CI lower bound 
(2.5%) 

CI upper bound 
(97.5%) 

0% 10655 55875 157 59604 

10% 10160 39304 155 57549 

20% 9333 39720 143 51680 

30% 8879 34418 135 49307 

40% 8453 32600 130 47562 

50% 8013 34744 124 44698 

60% 7317 28836 116 40804 

70% 7174 31413 110 39910 

80% 6767 28421 103 37766 

90% 6520 28799 99 36694 

100% 6083 23883 93 34388 



 

 

 

 

Table 20: Predicted Number of Lines Produced by Average Developer at Various Architectural 
Complexity Levels if Only Fixing Bugs 

Percent of lines 
submitted to core 

Expected number 
of lines produced 

Standard 
deviation 

CI lower bound 
(2.5%) 

CI upper bound 
(97.5%) 

0% 2815 1740 833 7322 

10% 2647 1602 799 6799 

20% 2490 1503 759 6395 

30% 2349 1402 725 5979 

40% 2212 1305 689 5610 

50% 2088 1226 655 5269 

60% 1974 1158 624 4968 

70% 1854 1082 587 4636 

80% 1749 1021 557 4393 

90% 1657 970 528 4171 

100% 1567 912 499 3931 



 

 

 

 
Table 21: Predicted Number of Lines Produced by Average Developer at Various Architectural 
Complexity Levels 

Percent of lines 
submitted to core 

Expected number 
of lines produced 

Standard 
deviation 

CI lower bound 
(2.5%) 

CI upper bound 
(97.5%) 

0% 5359 2870 1748 12662 

10% 5148 2764 1674 12200 

20% 4928 2650 1609 11646 

30% 4734 2552 1543 11217 

40% 4534 2430 1473 10689 

50% 4373 2376 1411 10395 

60% 4197 2279 1355 9990 

70% 4043 2211 1299 9681 

80% 3892 2133 1246 9309 

90% 3730 2055 1183 8955 

100% 3594 1998 1136 8694 
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9 Result 3: Link Between Architectural Complexity and Staff 
Turnover 

In our third analysis we explore the proposition that developers working in architecturally complex files have 

a greater likelihood of leaving the firm (either voluntarily or involuntarily).  We explore the relationship 

between the fraction of lines of code an individual contributes to ―core‖ files (relative to peers) and whether 

that person left the firm during the 8 release windows studied or during the subsequent 4 years.  In these 

models we control for a variety of factors, each of which could be considered an alternative explanation for 

why a developer might have left the firm.  Controls tested include a developer‘s prior length of employment 

with the firm, managerial status, fraction of activity working in new (rather than legacy) code, faction of 

activity spent fixing bugs, and fraction of activity working in files with high McCabe cyclomatic complexity.  

The goal of these models is to determine if architectural complexity has a significant impact on staff turnover, 

even when weighed against these other viable explanations for attrition. 

9.1 Descriptive Statistics on Developer Turnover 

The sample of software developers used to explore turnover included 108 people who wrote code in the 

C++ portion of Iron Bridge‘s codebase during the 8 releases studied.  Each person appears in the dataset 

only once.  In order to be included in the sample, a developer must have contributed to the product for at 

least one of those 8 releases.  The sample included developers who were already employed at the beginning of 

the window and people who joined the firm at some point during the eight development periods under study.  

Of the 108 developers in the sample, 62 were present during the first release while the rest joined later. 

Developer-specific data from multiple releases was pooled.  Developers were then divided into groups of 

stayers and leavers.  Stayers were those who remained employed for up to 4 years beyond the last release 

measured.  Leavers were those who left the firm (either voluntarily or involuntarily) during the 8 development 

windows or during the subsequent 4 years.  There were 91 stayers and 17 leavers in the sample. 
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Table 22: Comparing the Population of Stayers and Leavers 

  Mean Median 
Standard 
deviation 

  stay leave stay leave stay leave 

Years employed (window start) 3.88 2.68 1.92 0.92 3.90 3.59 

Lines produced per release 4114 2962 3343 2284 2630 2224 

Percent lines to fix bugs 43.1% 48.7% 38.4% 42.2% 22.5% 21.3% 

Percent lines in new files 47.8% 45.1% 44.3% 41.3% 23.1% 25.6% 

Percent lines in high McCabe files 35.4% 35.1% 35.6% 34.0% 19.2% 19.6% 

Percent lines in core files 71.1% 87.3% 80.1% 93.8% 27.4% 17.4% 

Years employed rank 51.1% 42.4% 52.8% 41.7% 30.0% 27.1% 

Lines produced per release rank 52.6% 39.1% 52.8% 36.1% 28.8% 28.3% 

Bug fraction rank 49.2% 57.3% 49.1% 55.6% 29.2% 27.7% 

New file fraction rank 51.1% 46.9% 51.9% 43.5% 28.6% 31.5% 

High McCabe rank 50.5% 50.1% 50.9% 47.2% 29.1% 29.6% 

Core file fraction rank 47.7% 65.2% 45.4% 71.3% 29.3% 23.0% 

Stay: N=91, Leave: N=17 
       

Table 22 shows differences between these two populations.  Note that those who stayed had been employed 

for longer.  The mean stayer had been employed for 3.88 years prior to her first sampled release cycle.  The 

mean leaver had only been employed for 2.7 years.  The mean stayer produced more than 4000 lines of code 

per release on average, while the mean leaver produced less than 3000.  Stayers were slightly more likely to 

work on features rather than bug fixes, work in new rather than legacy code, and did not spend as much time 

working in ―core‖ files. 

9.2 Modeling Architectural Complexity and Staff Turnover 

Our third proposition is that developers working in regions of the codebase with higher levels of architectural 

complexity will have higher levels of turnover.  In order to analyze the determinants of developer turnover, 

we constructed a set of statistical models using a Boolean dependent variable indicating whether the 

developer was a stayer or a leaver.   
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A variety of controls were included for each individual including an indicator of whether that person was ever 

a manager during the 8 releases studied.  People were also ranked based on their length of employment, the 

number of lines they produced per release cycle, the fraction of their activity that went into fixing bugs, the 

fraction of their activity that went into developing new files, and the faction of their activity in files with high 

McCabe cyclomatic complexity.13  Rankings between developers were used in this analysis (rather than raw 

percentages) because we are testing relative propensity to leave the firm (vs. absolute productivity.)  

Each control used in our models offers an alternative explanation for why a person might stay or leave the 

firm (both voluntarily or involuntarily).  Employees with longer tenures should be more likely to stay, both 

because they have already demonstrated a desire to stay with the firm and because younger individuals tend to 

be more mobile.  Managers should be more likely to stay for similar reasons.  Individuals who are more 

productive should be more likely to stay for a variety of reasons if the culture rewards productivity.  

Individuals fixing bugs may feel that their jobs are less rewarding.  Individuals working on new features (more 

likely in new files) may feel more rewarded than those working to maintain legacy functionality (more likely in 

older files).  Finally, individuals working in files with high McCabe cyclomatic complexity may leave because 

they do not find it rewarding to work in code that is more fragile or error prone. 

Each developer in the sample was given a ranking based on the fraction of their code that went into 
core files.  This ranking was used as the independent variable under study.  Logistic regressions 
were used here due to the binary nature of the dependent variable.  Variables used in those models 
are presented in 

                                                      

13 Control variables representing the proportion of lines submitted to files with ―high‖ direct fan-in and 
direct-fan out were not included due to the fact that they are highly correlated with visibility scores and 
because the extreme levels of skew in their distributions (the distribution of fan-in scores fit a power-law 
distribution for instance) make it difficult to obtain or interpret results.  Due to the highly skewed nature of 
the data, the sample of files with ―high‖ direct visibility scores is insufficiently small. 



 

136 

 
Table 23. 
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Table 23: Variables Included in Statistical Model Predicting Developer Turnover 

Variable Purpose Type Description 

Developer left the 
firm? 

Dependent 
Variable 

Boolean If a developer left the firm (either voluntarily or 
involuntarily) during the 8 development windows 
under study or within the subsequent 4 years, the 
developer is defined as a leaver.  If still employed, 
the developer is defined as a stayer. 

Was developer 
ever a manager? 

Control Boolean Boolean variable indicating whether a developer 
was a manager at any point in the 8 development 
windows under observation. 

Employment 
length rank 

Control Rank The percentile rank of a developer's length of 
employment during the first release in which the 
developer appears in the data set. 

Lines produced 
rank 

Control Rank The percentile rank of a developer's total number 
of lines produced divided by the number of 
releases in which they were observed. 

Bug fraction rank Control Rank The percentile rank of a developer's fraction of 
lines submitted to fix bugs over all development 
windows in which they were observed. 

New file fraction 
rank 

Control Rank The percentile rank of a developer's fraction of 
lines submitted into "new" files over all the 
releases in which they were observed.  A file is 
considered to be a "new file" if it is less than two 
years old.  File age is computed by subtracting 
the date of the file's first change from the release 
date.  The percentage of lines submitted to new 
files is computed by determining the proportion 
of lines produced by a developer during a release 
that modified new files. 

High McCabe rank Control Rank The percentile rank of a developer's fraction of 
lines submitted to modify files containing any 
functions/methods with Modified Cyclomatic 
Complexity scores above 20 over all releases in 
which they were observed.  [112] 

Core fraction rank Independent 
Variable 

Rank The percentile rank of a developer‘s proportion 
of lines submitted to modify files given the 
architectural complexity classification of "core" 
using the transitive closure based techniques 
developed by MacCormack, Baldwin, and Rusnak 
over all the releases in which they were observed.  
[8, 9] 
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9.3 Regression Models 

Regression results for models predicting staff turnover are shown in Table 24.  Developer productivity (lines 

of code produced per unit time) was negatively associated with turnover and was significant at the 10% level.  

More productive developers were more likely to remain with the firm.  Whether an employee was a manager 

was almost statistically significant, with a P value of 11.06%, suggesting that a slightly larger sample size might 

lead us to conclude that managerial status also decreases turnover.  No other variable had a P value below 

50%.  Although most controls in the model were not significant predictors all pointed in the expected 

direction. 

Note that our third proposition holds.  Developers working in more architecturally complex regions of the 

code (those files considered ―core‖) were much more likely to leave the firm (voluntarily or involuntarily).  

The coefficient of interest became stronger rather than weaker as controls were added.  (Statistical 

significance improved as well, with a P value of 1.35% in the full model.)  Of all variables included in these 

models, architectural complexity had the strongest impact on turnover.  Although the main set of models 

uses ranks in calculations, similarly significant results are obtained by running regressions on an alternative set 

of models using raw percentages rather than ranks as predictors (shown in Table 25). 

 



 

 

 

 

Table 24: Predicting Turnover Among Developers Based on Rankings (Logistic Model) 

Parameter Model 1: 
developer 
attributes 

  Model 2: 
developer 
productivity 

  Model 
3: type 
of work 

  Model 4: 
cyclomatic 
complexity 

  Model 5: 
all 
controls 

  Model 6: 
architectural 
complexity 

  Model 
7: full 

  

Years employed rank -0.5926 
       

-0.8768 
   

-0.7582 
 Is manager? -0.8718 

       
-1.2221 

   
-1.5216 

 Lines produced per release rank 
  

-1.6825 . 
    

-1.7528 
   

-2.2323 . 

Fraction work to fix bugs rank 
    

0.9146 
   

0.6502 
   

0.2045 
 Fraction work in new file rank 

    
-0.2214 

   
-0.4287 

   
-0.8333 

 Fraction work high cyclomatic rank 
      

-0.0504 
 

0.0402 
   

-0.7483 
 Fraction work in core rank                     2.2519 * 2.9558 * 

Residual Deviance 91.541 
 

90.851 
 

92.843 
 

94.032 
 

86.171 
 

88.586 
 

78.952 
 Degrees of Freedom 105 

 
106 

 
105 

 
106 

 
101 

 
106 

 
100 

 AIC 97.541   94.851   98.843   98.032   100.17   92.586   94.952   

N = 108 software developers 

Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001 
 



 

 

 

Table 25: Predicting Turnover Among Developers (Logistic Model) 

Parameter Model 1: 
developer 
attributes 

  Model 2: 
developer 
productivity 

  Model 
3: type 
of work 

  Model 4: 
cyclomatic 
complexity 

  Model 5: 
all 
controls 

  Model 6: 
architectural 
complexity 

  Model 
7: full 

  

Years employed -0.0535 
       

-0.0784 
   

-0.0786 
 Is manager? -0.8123 

       
-1.0545 

   
-1.1398 

 Lines produced per release 
  

-0.0002 . 
    

-0.0002 
   

-0.0003 . 

Fraction of lines to fix bugs 
    

1.0526 
   

0.6694 
   

0.0579 
 Fraction of lines in new files 

    
-0.1638 

   
-0.6652 

   
-1.3219 

 Fraction lines in high McCabe files 
      

-0.0954 
 

-0.2562 
   

-1.4194 
 Fraction of lines in core files 

          
3.5440 * 4.1114 * 

Residual Deviance 91.525   90.884   93.112   94.03   86.656   87.181   78.632   

Degrees of Freedom 105 
 

106 
 

105 
 

106 
 

101 
 

106 
 

100 
 AIC 97.525   94.884   99.112   98.03   100.66   91.181   94.632   

N = 108 software developers 

Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001 
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9.4 Interpretation of Results 

Two sets of simulations were run to determine the expected probability that a developer would leave the 

firm (voluntarily or involuntarily) as a result of the complexity of the code they are working in.  The first 

simulation employed the full version rank-based model shown in Table 24.  Control variables for all ranks 

were simply set to the median, or 0.5.  The second simulation employed the full version of the turnover 

model that used percentages rather than percentile ranks (shown in Table 25).  In this second simulation, 

control variables were set to their means.  The number of years a developer was employed (prior to their 

first release in the window) was set to 3.7 years.  Lines produced per release was set to 3932.  The percentage of 

lines submitted to fix bugs was set to 44%.  The percentage of lines submitted into new files (those younger than 2 

years old) was set to 47%.  The percent of lines submitted to high McCabe files was set to 35%.  Managerial 

status was set to false in both simulation runs.  The response of the probability of leaving variable to changes 

in the architectural complexity of the code being worked on was determined by running simulations for 

both relative and absolute levels of architectural complexity. 

Table 26 shows the impact of relative rank on the probability of turnover.  The developer with the 

smallest fraction of lines in the core had a 5% chance of leaving the firm.  The developer with the largest 

fraction has a 44% chance.  Moving from the 25th to the 75th percentile more than quadrupled the 

probability of leaving.  Table 27 looks at the probability of turnover in absolute rather than relative terms.  

A developer working entirely in the periphery has a 2% chance of leaving the firm, while a developer 

working entirely in the core has a 31% chance of leaving the firm. 



 

 

 

Table 26: Predicted Probability of Leaving the Firm For Developers Based On 
Their Relative Amount of Work in Core 

Percentile 
rank for 

fraction of 
work in core 

Expected 
probability of 

leaving 

Standard 
deviation 

CI lower 
bound (2.5%) 

CI upper 
bound 
(97.5%) 

0th 0.0503 0.0418 0.0079 0.1625 

10th 0.0621 0.0433 0.0134 0.1757 

20th 0.0772 0.0444 0.0215 0.1914 

30th 0.0971 0.0455 0.0343 0.2090 

40th 0.1220 0.0464 0.0526 0.2324 

50th 0.1545 0.0487 0.0776 0.2660 

60th 0.1953 0.0542 0.1056 0.3164 

70th 0.2450 0.0661 0.1340 0.3903 

80th 0.3037 0.0848 0.1575 0.4863 

90th 0.3693 0.1084 0.1792 0.5962 

100th 0.4376 0.1325 0.1965 0.7022 

 
 

Table 27: Predicted Probability of Leaving the Firm at Various Architectural 
Complexity Levels 

Percentage of 
lines 

contributed 
to core 

Expected 
probability of 

leaving 

Standard 
deviation 

CI lower 
bound (2.5%) 

CI upper 
bound 
(97.5%) 

0% 0.0219 0.0461 0.0003 0.1421 

10% 0.0262 0.0471 0.0006 0.1525 

20% 0.0320 0.0472 0.0013 0.1647 

30% 0.0398 0.0481 0.0029 0.1733 

40% 0.0505 0.0484 0.0060 0.1823 

50% 0.0660 0.0493 0.0124 0.1967 

60% 0.0887 0.0498 0.0254 0.2148 

70% 0.1211 0.0506 0.0476 0.2426 

80% 0.1671 0.0533 0.0824 0.2888 

90% 0.2300 0.0652 0.1218 0.3743 

100% 0.3108 0.0922 0.1530 0.5100 
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Figure 45: Predicted Developer Turnover (1) 

 

Figure 46: Predicted Developer Turnover (2) 
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The link between architectural complexity and turnover was surprisingly strong.  A variety of plausible 

controls were included in this analysis, each representing a sound alternative hypothesis for why a 

developer might leave the firm.  None yielded a stronger effect on developer turnover than architectural 

complexity. 
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10 Discussion & Conclusions 

Software systems today can be composed of millions of entities (such as functions, classes, methods, data 

structures, etc.) that are connected in countless ways.  Designing and maintaining these systems is hard; 

keeping all of the complexity in the system under control is of the utmost importance.  When complexity 

causes different elements of a system to interact in unanticipated ways, or when parts of a system are so 

complex that they move beyond the bounds of human cognitive capacities, a host of interconnected 

problems begin to occur.  When we lose control of complexity in a system‘s design, it can lead to project 

failure, business failure, and/or man-made disaster.  Even systems of high quality with a sustainable level 

of overall complexity may have some sub-systems and cross-cutting concerns that are unmanageable.   

In order to control complexity in large systems, architects often employ certain well-known patterns in 

their designs to keep architectural complexity in check: hierarchies, modules, and layering schemes, among 

others.  When carefully applied, these patterns can aid developer comprehension and enable 

independence of action.  They can also endow systems with a variety of beneficial properties including 

reliability, evolvability, scalability, and flexibility, just to name a few.   

In this research we set out to explore the costs that architectural complexity within a product imposes on 

the firm that develops and maintains it.  A study was conducted at Iron Bridge Software, Inc., the owner 

of a mature commercial software product under active development.  Measures of architectural 

complexity were taken for source-code files in 8 successive releases of their software.  In order to 

operationalize the notion of architectural complexity, we used procedures and metrics devised by 

MacCormack, Baldwin, and Rusnak [8, 9] Three important cost drivers were explored: defect density, 

software developer productivity, and development staff turnover.  To explore the relationship between 

each of these three cost drivers and architectural complexity within the codebase, three regression-based 

analyses were conducted. 

The primary findings of this study were that within Iron Bridge‘s codebase and development 

organization: 
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 Architecturally complex source code files have a much higher defect density.  The most complex 

code was found to have triple the defect density of the least complex code. 

 Architectural complexity impairs the productivity of software engineers working with it.  If a 

hypothetical group of engineers working in the least architecturally complex regions of the 

codebase were to be moved into the most complex regions, their productivity would decline 

(conservatively) by 50%. 

 Architectural complexity causes staff turnover.  Software engineers working in the most complex 

regions of the code had a probability of leaving the firm that was ten times greater than their 

peers working in least architecturally complex code. 

10.1 Contributions to Academic Literature 

This dissertation makes a number of contributions to academic literature in the areas of system design, 

software design, engineering management, and complexity theory.  While some previous studies have 

explored the impact of network-based metrics on defect density [158], none have explored the impact of 

network based complexity metrics on defects in a commercially produced and mature software system 

over multiple releases.  We are aware of no studies that have systematically looked at the relationship 

between a system‘s architecture and the productivity of technical professionals that work on different 

parts within that structure.  We are also unaware of any past studies exploring the link between a system‘s 

architecture and staff turnover.  We therefore believe that this study makes a number of novel 

contributions to the academic literature. 

This work empirically demonstrated that architectural complexity is an important driver of defects.  This 

result was not entirely unexpected.  It was unexpected, however, that MacCormack‘s architectural 

complexity metric would predict defects as well as (if not somewhat better than) the widely accepted 

McCabe cyclomatic complexity metric.  Most traditional software complexity metrics (such as McCabe‘s) 

are reductionist in nature.  They capture properties of individual software components considered in 

isolation while ignoring the architectural patterns that link them.  Architectural complexity, on the other 

hand, is a holistic concept that largely ignores the contents of individual files and focuses only on the 



 

147 

patterns binding the parts to the whole.  For this reason, architectural complexity may capture a 

fundamentally different concept of quality that is equally important to more traditional measures. 

While theoretical and descriptive work done over many decades has led us to implicitly trust the notion 

that the architecture of a complex system should influence productivity of engineers working within it, 

this work is the first to establish the link in an empirical setting and the first to provide quantitative 

estimates for the strength of that relationship.  In order to establish this link we used a fixed effects panel-

data approach to look at productivity differences within the same individual across multiple time periods.  

The relationship that was found was statistically significant and quite strong.  We were able to estimate 

the effect of architectural complexity in the code that a developer worked in on overall productivity, 

productivity while implementing product enhancements, and productivity while fixing defects. 

This work is the first to explore the influence of architecture on technical staff turnover.  We had no idea 

if a relationship between architectural complexity and staff turnover could be established.  The fact that 

the impact of architectural complexity was found not only to be substantial and statistically significant, 

but also to be of greater importance than a developer‘s tenure, productivity, fraction of effort in new (vs. 

legacy) code, fraction of effort working on bugs, and fraction of effort working in files with high McCabe 

complexity was very surprising.  It should be noted that this analysis was performed after we realized the 

strength of the effect architectural complexity had on both defect density and individual productivity. The 

rationale for exploring the link between complexity and turnover rested on the premise that developers in 

architecturally complex code likely had other problems stemming from (or causing) their decreased 

productivity and higher defect-introduction rate.  They might also have more trouble making reliable 

estimates, more trouble delivering on schedule, more failed attempts to solve problems, more 

unanticipated side effects, more sleepless nights, more anxiety, and more stress.  Exacerbating this 

situation is the fact that architectural complexity is not directly observable.  Architecturally complex code 

might appear well constructed and appropriately commented upon isolated inspection.  Appreciating the 

true reason that such code may have too many defects or produce too many side effects might require a 

person to mentally traverse indirect links to discover cyclical dependency chains that span the organization.  

This task might be impossible given human cognitive constraints.  As a result, managers and peers might 
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evaluate developers in architecturally complex regions of a large system more harshly than their abilities 

and contributions actually warrant.  The hypothesis that all of these interconnected factors would cause 

detectably higher rates of staff turnover turned out to be correct.  While turnover can be healthy for an 

organization, it is hard to see turnover that results from architectural complexity as anything other than a 

negative.  Ultimately, some new developer will be placed in the same position as the last while the root-

cause may go unaddressed. 

A surprising negative result found in this study was that no statistically significant relationship between 

McCabe complexity and development staff productivity or turnover could be established.  While it is 

possible that a different measurement or analysis approach might have establish this link, it is also 

possible that architectural complexity and component-centric measures of complexity behave in different 

ways, and therefore impact software engineers differently. Architectural complexity can slow progress by 

causing rework, subtle side effects, and deadlock across organizational boundaries in ways that 

component-specific complexity does not.  Component-complexity can be directly perceived, is contained, 

can be avoided, and can be corrected by a single engineer acting unilaterally. Architectural complexity, on 

the other hand, is invisible, results from dependencies that span the system, cannot be avoided, and 

requires coordinated action across organizational boundaries to mitigate.  For these reasons, it is entirely 

possible that architectural complexity truly has a much stronger impact on productivity, morale, and staff 

turnover. Future work should be done to explore this possibility. 

This work provides support for the validity and utility of the MacCormack, Baldwin, and Rusnak 

approach.  The MacCormack approach provides a repeatable means of extracting architectures from 

software and a quantifiable means of measuring complexity within that software design.  Much of the 

prior work connecting these architectural metrics to outcome variables was qualitative or descriptive, 

however.  By using the MacCormack approach to measure complexity on a large scale in a commercial 

setting and then relating that complexity to quantities of obvious managerial interest, this dissertation 

lends support to the validity and practical utility of MacCormack‘s methods. 

Finally, this work confirms many of the intuitive beliefs held within the system design and design 

structure matrix community, but is the first to offer empirical support for some of those beliefs.  This 
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work also reemphasizes the importance of hierarchy and modularity as high-level design principles by 

demonstrating how costly deviations from them can be. 

10.2 Contributions to Managerial Practice: 

A number of insights gained over the course of this research have the potential to contribute to 

managerial practice.  By conducting a case study within a representative commercially successful software 

firm, exploring a large codebase that is both mature and growing rapidly, and studying large community 

of paid software developers in all career stages, we greatly increase the possibility that results gleaned here 

will be applicable in other firms or organizations responsible for developing and maintaining software 

codebases or other complex systems.   

The first contribution of this work is simply to demonstrate how costly architectural complexity can 

actually be and to suggest an approach to computing the financial value of successful redesign efforts.  

We found that differences in architectural complexity could account for 50% drops in productivity, three-

fold increases in defect density, and order-of-magnitude increases in staff turnover.  This is not the whole 

story however.  When considering the cost of additional defects and lower productivity in combination, 

the picture becomes more dramatic because the 50% productivity loss we calculated assumes that a 

developer‘s ratio of feature development to bug-correction work is held constant as he moves from the 

periphery to the core.  Because complex code has more bugs, and because bug fixes require much more 

time (per line of code) to implement than comparably sized features, productivity (as measured by LOC 

produced per unit time) will slip further than 50%.  One should also consider the fact that defect 

correction is a necessary but non-value-add activity.  The value that a customer derives from a developer‘s 

productive output does not include work done to fix bugs (unless those bugs were released into the 

market place.)  This suggests a possible alternative productivity measure that excludes defect-correction 

LOC written from consideration altogether, further amplifying the effect.  When considering the cost of 

increased staff turnover among developers in architecturally complex code, one must consider the cost of 

recruiting and training replacements and the cost of bugs that rookie developers will introduce.  Such a 

calculation must also account for the fact that developers in the core are likely the hardest to replace 
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because of the need for higher skill levels and steeper learning curves.  Using the techniques developed in 

this thesis, it should be possible for firms to estimate the financial cost of their complexity by assigning a 

monetary value to the decreased productivity, increased defect density, and increased turnover it causes.  

As a result, it should be possible for firms to more accurately estimate the potential dollar-value of 

refactoring efforts aimed at improving architecture.  While we have not gone through the exercise of 

converting the above factors into dollar figure estimates of cost, we are now quite convinced that 

refactoring efforts that successfully reduce architectural complexity have the potential to create enormous 

financial value for the firm. 

A second contribution of this work to managerial practice is to point toward a means of managing 

refactoring efforts.  By utilizing tooling similar to the programming interface, database infrastructure, 

mathematical analysis code, and DSM software that we created for this work (shown in Figure 32), 

managers would have a means of tracking progress towards complexity reduction.  They would have the 

ability to visualize the structure of code as it changed and could track resulting cost reductions by 

monitoring the movement of KPIs in subsequent time periods.  These managers would feel more 

confident when moving forward with larger refactoring efforts because they would have a key feedback 

mechanism allowing their organization to move, learn, and adjust as needed.  Without the ability monitor 

architecture and the cost it imposes, managing a system overhaul is a much more uncertain proposition, 

often leading to ―death marches‖ and costly failures. 

This thesis also has other practical applications.  It demonstrates that the MacCormack, Baldwin, and 

Rusnak metrics can be added to the list of metrics that successfully identify defect-prone files or predict 

future defects.  By combining architectural metrics with other previously validated component-based 

defect predictors, we should gain accuracy.  Better predictive capabilities give organizations better ability 

to proactively clean problematic areas of their codebases and appropriately allocate testing resources. 

This work also helps address some of the problems with software cost and schedule estimation models.  

Kemerer said that the Achilles heel of estimation models is their lack of a sound underlying theory of 

developer productivity. [159] Schedule and cost models base their estimates for required effort on LOC, 

function point, or other counts that capture code volume but ignore the interdependence between 
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elements in a system resulting from its architectural or structural properties.  Because this research has 

demonstrated that architectural complexity is a very strong driver of an individual‘s productivity, cost 

estimation techniques that rely on productivity estimates might improve if measures of architectural 

complexity were taken into account. 

Finally, this work suggests that a shift in mindset might be warranted in software firms that attempt to use 

quality metrics and models (see [108]) derived from experiences gained in the advanced manufacturing 

world. Many Lean or Six-Sigma inspired models transplanted into software settings measure bugs, bug 

introduction rate, bug correction rate, and use a variety of techniques to link bugs to team or individual 

performance.  Unfortunately, these models often have no concept of what a bug is, what causes them, 

and what can be done to reduce their frequency.  In these models, ―bugs‖ are completely disembodied 

from the code or software architecture in which they rest.  The implicit message underlying models that 

only measure people and bugs is that people are to be blamed for bugs.  While it is partially true that 

people cause bugs, we believe that this research points towards a healthier mental model.  We propose 

that complex architecture causes bugs, impairs productivity, and thwarts understanding.  We propose that 

developers are in some senses its victims.  By measuring software structure and architectural complexity 

we can give development organizations the ability to coordinate actions and address the actual root causes 

behind defects and project failures.  We can better understand which projects are likely to have false-

starts, offer additional support for those working in entangled parts of the code, and give combat pay to 

those attempting to refactor cross-cutting concerns.  In general, an understanding of architectural 

complexity and the costs that it imposes should help an organization more appropriately set expectations 

and allocate resources. 

10.3 Limitations of This Work 

This work has a few important limitations that should be understood. 

Because this dissertation has focused primarily on the cost of complexity, it must be said that complexity is 

not inherently bad, even if it leads to a variety of increased costs.  Managers must focus on value – benefit 

minus cost – to make rational decisions.  Complexity adds value.  No system will be free of complexity, and 
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a system with more complexity may have other benefits, such as increased performance, that offset the 

costs.  Even if a system is undesirably complex, it might not be worth addressing if the cost of refactoring 

would be greater than the expected cost reduction.  This dissertation does not consider the full spectrum 

of factors that must go into a cost-benefit analysis. We also do not compute values for many benefits 

modularity is known to provide, such as increased ―option value‖ [5].  We do not consider the fact that 

design modularity is sometimes incompatible with physics or other hard requirements in the problem 

domain. [7] Finally, because we are only taking measurements within a successful firm that ships popular 

software products, we can only report on the cost of complexity in a situation where that complexity is 

controlled to an acceptable degree.  In this research, we have no means of estimating the cost of 

uncontrolled design complexity, which has lead to the failure of firms. [24, 59] (This firm-level data may, 

however, capture the impact of isolated project failures.)  This research also affords us no means of 

studying the risk posed to public safety by uncontrolled complexity in technical systems during their 

operation.  Although we make no probabilistic estimates for complexity spiraling out of control, or for 

the damage done should that occur, these possibilities should always be weighted during system design, 

tipping the scales towards complexity control to some extent. 

Although many steps were taken to ensure a high-degree of internal validity, a single firm study suggests 

some threats to external validity.  It is possible that Iron Bridge is unrepresentative and that our 

conclusions therefore have limited applicability.  We believe this to be unlikely.  Although Iron Bridge has 

some unique attributes, it is a reasonably representative large software development firm.  Over the years, 

Iron Bridge adopted several industry standard languages, development tools, and techniques.  Its design 

and project-management practices are similar to those of other large commercially oriented software 

firms as well.  This adoption was the result of both deliberate organizational-learning efforts and cross-

pollination due to hiring.  Software professionals have migrated between Iron Bridge and other firms, 

carrying their knowledge, experiences, and practices with them.  

A third important point to make is that files and software developers are the units of analysis in this 

study; the firm and the codebase are not.  The study design employed only permitted us to evaluate the 

cost of more architecturally complex vs. less architecturally complex regions within the same codebase.  A 
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variety of setting-specific factors, such as unique tooling, processes, and measurements would make 

apples-to-apples comparisons between Iron Bridge‘s system and some other system very hard, even if that 

were the intent of this work. 

One potential barrier to broad generalizability stems from the choice of domain.  An analysis of the effect 

of software complexity on quality within a software architecture and the productivity of software developers 

might not be generalizable to engineering systems of different sorts.  This concern is real, and the reader 

should understand that lessons learned here might not all be directly applicable to systems of a different 

type.  There are fundamental distinctions between information and physics resulting in differences 

between the nature of software and electro-mechanical products.  These necessarily lead to differences 

between the practice of software engineering and engineering in other domains. However, there are 

enough similarities that we believe many of the results established in this work could be generalized 

outside the field of software.  One reason is that we are looking at how fallible and boundedly rational 

designers cope with complicated and complex system designs.  Large organizations made up of those 

humans will face many of the same challenges and experience many of the same pitfalls no matter what 

they are building.  A second reason is that we are not focusing much on properties unique to software or 

information.  Instead, we are focusing on interconnection patterns between coupled elements that come 

together to form hierarchies and modules. These common patterns are found in large systems of all types, 

man-made and natural, and have been shown to relate to their ability to survive, scale, and evolve.  It is 

therefore reasonable to suspect that the influence of these universal properties associated with complex 

system architectures will influence cost drivers in a similar manner regardless of system type. 

10.4 Directions for Future Work 

This work raises many interesting questions that could be explored in future work.   

Due to the fact that this case study only explored the cost of complexity in a single firm, an obvious 

extension would be to find other suitable firms in which to replicate the analyses presented here.  

Replication could be done under similar conditions or with slight variations.  For instance, because this 

report presented results gleaned from a C++ codebase developed by a mature commercial firm, future 
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research could look at younger firms or firms using shorter release cycles.  It would also be good to 

validate these results in codebases written in other languages or in other application domains. 

A second extension would be to do pre- and post- analyses of refactoring efforts within a codebase such 

as the one developed by Iron Bridge.  While this work provides evidence that portions of a codebase with 

lower complexity also have lower costs, it does not look for evidence that specific refactoring both 

reduced architectural complexity and lowered costs.  Investigators could work with multiple teams that 

have previously conducted a refactoring to look for evidence that their effort resulted in improvements.  

In so doing, we could gain confidence in, and improve, complexity and cost measures.  These pre- and 

post-comparisons may also allow us to determine the extent to which refactoring was worthwhile from a 

financial standpoint.  We could then use the tools devised over the course of this research to work with 

teams initiating new redesign efforts to determine if structure-related information and past cost 

information can help in their planning. 

Thirdly, it should be noted that the turnover study left some questions unanswered and deserves to be 

revisited in the future.  While the previous discussion explored the means by which complexity could 

increase turnover, an alternative explanation that may not have been adequately explored is the possibility 

that the ―best‖ developers both work in the core and have the most promising opportunities outside the 

firm.  If this were the case, then activity in the core would simply be a proxy for valuable engineering 

competence, and therefore mobility.  In order to more fully explore this alternative explanation salary 

levels and performance ratings might be included in regression analysis.  Future work following up on the 

turnover analysis should also attempt include a larger sample of leavers by profiling more development 

periods and should employ a hazard model approach.  We find the current results linking complexity to 

turnover to be very intriguing and believe further work should be done to gain additional confidence in 

the surprisingly strong result that was obtained here. 

Fourthly, while this work measures a variety of costs, there are many that have gone unexplored.  A 

valuable extension to this work would be to round out the cost analysis with a study of learning curves 

and career growth patterns.  It is likely that complexity in a codebase affects rookies and veterans 

differently.  It is possible that rookies who are slowly moved into the core thrive while rookies thrown 
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into the core immediately suffer.  It is also possible that rookies have a harder time diagnosing bugs in the 

core than veterans do.  More fully understanding the dynamics of new-hire ramp-up, migration patterns 

around the codebase, the role that complexity has in performance evaluation and morale, and the 

resulting impact on turnover would help round out our understanding of the dynamic interplay between 

complexity in the codebase and the employees who work in it. 

Another area for future work would be to use these findings and other insights gained about the cost of 

complexity to improve upon the system dynamics or agent-based models that simulate the dynamics of 

large projects as they unfold through time.  A large body of system dynamics work has been done to look 

at the dynamics of project management. [24, 27-29] These models have explored the interplay between 

productivity, cost, quality, turnover, morale, and learning curves and have been used for planning on 

many large programs.  One limitation of these models is that they tend to treat all tasks equally.  To my 

knowledge none of those models have incorporated information about architecture or the cost of 

architectural complexity and none have attempted to explore the relationship between the growth 

patterns of a complex system and the dynamics of the development effort that produces it. 

Finally, future work should investigate the link between architecture, morale, and turnover.  The results 

presented in this thesis demonstrating that architectural complexity can significantly increase turnover 

raises a variety of questions about the underlying causal mechanism.  We previously posited that high 

architectural complexity might affect morale through a variety of means.  We suggested that because 

complexity leads to lower productivity and more defects, it also likely leads to overwork, burnout, stress, 

and other things that harm morale and lead to higher voluntary turnover.  On the other hand, if managers 

evaluate engineers negatively as a result of lower productivity or higher defect introduction rates, then 

higher involuntary turnover may result.  Further investigation to explore these links between complexity, 

morale, and turnover would be valuable.  
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10.5 Concluding Remarks 

It should be noted that the study presented in this dissertation analyzed eight old releases.  Our data 

therefore fails to capture the impact of more recent architectural changes.  In the intervening time period 

between ‗release 8‘ and today, a strategic initiative – a modularization program – was begun with the goal of 

splitting Iron Bridge‘s historically monolithic codebase into a hierarchy of modular units with well defined 

interfaces and explicitly declared dependencies.  The database infrastructure that was constructed so that 

we could conduct this study using historical releases has also been used by ―Clark Kent‖ (the senior 

system architect driving Iron Bridge‘s overall modularization effort) to explore the structure of the 

current codebase for the past few years.  Clark (and now a growing group of development managers) uses 

this tool to explore the codebase‘s dependency structure, cross-module coupling, and module interfaces.  

He also uses it to identify violations of design rules including undeclared dependencies and the use of 

non-public interfaces.  In the future it may be possible to study the benefits that Iron Bridge reaps from 

its significant investment in architectural improvement today. 

To conclude this work we will summarize points made by ―David Parker,‖ Iron Bridge‘s CEO, during a 

recent interview.  Dave told us that Iron Bridge is taking serious steps to address complexity in software 

architecture because he and other company leaders have become convinced that modularization is the 

singe most important thing that can be done to improve quality, improve development team productivity, 

make the firm more agile, and give Iron Bridge a good future market position.  He noted that teams that 

have historically suffered from too much complexity have had a harder time developing code and have 

been slower delivering features.  He also held out the experiences of many teams that had been ―broken 

free‖ by the modularization effort and had become much more effective as a result. 

Dave says that ongoing architectural improvement is being prioritized today and will continue to receive 

significant investment into Iron Bridge‘s foreseeable future.  He plans to ensure that progress continues 

in two ways.  Firstly, he plans to invest more in measurement systems and metric development so that 

complexity can be tracked, appropriately managed, and appropriately dealt with by teams working 
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individually and collectively.  Secondly, he says that development teams must explicitly prioritize some 

refactoring as part of their release schedule to have a balanced budget of activities. 

When asked why he believes architecture and modularity are so important, Dave spoke about a new 

concept he came across in the past few years: technical debt.  Dave views architectural problems and 

complexity in Iron Bridge‘s code as a debt to be paid off because ―if it gets too large, just like financial 

debt, it starts to weigh you down.‖  He believes that this new analogy has helped many people in the 

organization better understand the benefits of refactoring and the importance of making appropriate 

short- vs. long-term tradeoffs in the code.  Iron Bridge‘s leadership is convinced that good architectural 

design is very important and that they must do more to address the cost of complexity. 
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